Introduction to Geostatistics

11. Multiple regression, regression extensions

Edzer J. Pebesma

edzer.pebesma@uni-muenster.de Institute for Geoinformatics (ifgi) University of Münster

summer semester 2007/8, June 24, 2008

The multiple linear regression model extends the simple regression model with one single predictor

$$y_i = \beta_0 + \beta_1 X_{i,1} + e_i$$

to two predictors

$$y_i = \beta_0 + \beta_1 X_{i,1} + \beta_2 X_{i,2} + e_i$$

or *p* predictors:

$$y_i = \beta_0 + \beta_1 X_{i,1} + \dots + \beta_p X_{i,p} + e_i$$

ifgi

Example: two groups

(Ignoring the outlier)

> plot(Weight ~ Gender)

Example: ... seen through a linear regression glasses

```
> plot(Weight ~ I(as.numeric(Gender) - 1))
```

> abline(lm(Weight ~ Gender))

Example: simple

> summary(lm(Weight ~ Gender)) Call: lm(formula = Weight ~ Gender) Residuals: Min 1Q Median 3Q Max -16.491 -6.491 -2.969 2.509 73.509 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 59.969 2.366 25.348 < 2e-16 *** Gendermale 16.522 2.996 5.514 3.87e-07 *** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 13.38 on 83 degrees of freedom Multiple R-squared: 0.2681, Adjusted R-squared: 0.2593 F-statistic: 30.41 on 1 and 83 DF, p-value: 3.871e-07 ifgi

Interpretation

So, weight depends on Gender.

But, there's also a length effect. Longer people are usually heavier, and men are usually taller than women.

Questions we could ask:

- is there, besides a Length effect still an effect of Gender on Weight? (testing)
- 2. how large is the effect of Length on Weight? (estimation)
- 3. Does this effect depend on Gender? (testing)

Example: simple

> summary(lm(Weight ~ Length)) Call: lm(formula = Weight ~ Length) Residuals: Min 1Q Median 3Q Max -13.776-2.776-7.238 3.993 75.993 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -86.9920 22.4307 -3.878 0.00021 *** Length 0.8846 0.1259 7.024 5.49e-10 *** ____ 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Signif. codes: Residual standard error: 12.39 on 83 degrees of freedom Multiple R-squared: 0.3728, Adjusted R-squared: 0.3652 F-statistic: 49.33 on 1 and 83 DF, p-value: 5.493e-10 ifgi

Example: simple

```
> plot(Weight ~ Length)
```

> abline(lm(Weight ~ Length))

Example: simple

- > plot(Weight ~ Length, col = Gender)
- > abline(lm(Weight ~ Length))

Example: the two parallel lines

Example: the two parallel lines added

Example: corresponding model

```
> summary(lm(Weight ~ Length + Gender))
Call:
lm(formula = Weight ~ Length + Gender)
Residuals:
                 Median
    Min
             1Q
                             ЗQ
                                    Max
-14.732 -7.204
                 -2.851
                          3.202
                                 74.688
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                                 -1.978 0.051245 .
(Intercept) -59.2577
                        29.9528
Length
              0.7095
                         0.1778
                                   3.991 0.000142 ***
Gendermale
                         3.9152
                                  1.387 0.169064
              5.4322
___
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
Residual standard error: 12.32 on 82 degrees of freedom
                                  Adjusted R-squared: 0.3722
Multiple R-squared: 0.3872,
                                                                 ifgi
F-statistic: 25.9 on 2 and 82 DF, p-value: 1.909e-09
```

3 Questions

- 1. is there, besides a Length effect still an effect of Gender on Weight? No, it is not significant; it can be there, but based on our data we cannot say whether it is positive or negative
- how large is the effect of Length on Weight? Is it 0.88 or 0.71? Despite the fact that gender is not significant, assuming H₀ that the effect is zero is not very realistic. We may therefor give a preference to the 0.71 estimate .
- 3. Does this effect depend on Gender? See next slide.

Does the effect depend on Gender?

- Both models (simple linear, and multiple linear) give a single dependence (slope of the line) for Weight on Length.
- The question whether this effect (the slope) depends on Gender, is the following: does the slope (Weight ~ Length) differ for male persons from that of female persons?

Let $X_{i,1}$ be Length, and let $X_{i,2}$ be zero for female, and one for male persons. Then

$$y_i = \beta_0 + \beta_1 X_{i,1} + \beta_2 X_{i,2} + \beta_3 X_{i,1} X_{i,2} + e_i$$

is a single regression model that reduces for female persons to

$$y_i = \beta_0 + \beta_1 X_{i,1} + e_i$$

and for male persons to

$$y_i = (\beta_0 + \beta_2) + (\beta_1 + \beta_3)X_{i,1} + e_i$$

so, we have two completely free regression lines, each with a unique slope and intercept.

ifgi

The R model

> summary(lm(Weight ~ Length * Gender)) Call: lm(formula = Weight ~ Length * Gender) Residuals: Min 1Q Median ЗQ Max -14.726 -7.301 -2.688 2.967 74.659 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -61.99199 41.97702 -1.4770.14360 2.909 0.00467 ** Length 0.72582 0.24948 Gendermale 11.32815 63.13357 0.179 0.85805 Length:Gendermale -0.03349 0.35788 -0.094 0.92568 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Signif. codes: Residual standard error: 12.4 on 81 degrees of freedom Multiple R-squared: 0.3872, Adjusted R-squared: 0.3645 ifgi F-statistic: 17.06 on 3 and 81 DF, p-value: 1.115e-08

Multiple linear regression with two variables.


```
> summary(lm(z ~ x))
Call:
lm(formula = z ~ x)
Residuals:
              1Q Median
    Min
                               3Q
                                      Max
-1.59744 -0.65875 0.02085 0.61690 1.82123
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.78683 0.33593 5.319 1.16e-05 ***
            0.50339
                      0.05414 9.298 4.68e-10 ***
х
____
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.8517 on 28 degrees of freedom
Multiple R-squared: 0.7553, Adjusted R-squared: 0.7466
F-statistic: 86.45 on 1 and 28 DF, p-value: 4.682e-10
                                                            ifgi
> summary(lm(z ~ x + y))
Call:
lm(formula = z ~ x + y)
Residuals:
    Min
              1Q Median
                               3Q
                                       Max
-1.04537 - 0.25856 0.04558 0.25999 1.00188
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept)
             0.1481 0.3011 0.492
                                        0.627
                      0.0321 15.681 4.37e-15 ***
             0.5034
х
             0.8194 0.1129 7.256 8.37e-08 ***
у
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.505 on 27 degrees of freedom
Multiple R-squared: 0.9171, Adjusted R-squared: 0.9109
F-statistic: 149.3 on 2 and 27 DF, p-value: 2.531e-15
                                                             ifgi
```

Why using multiple regression?

- 1. There is a difference in interpretation for slopes
 - when (some of) the predictors X are correlated, the slopes differ from eachother.
 - ► the slope for the model y = β₀ + β₁X₁ + e is simply the expected change in y as a function of X₁, ignoring everything else
 - ► the slope for the model y = β₀ + β₁X₁ + β₂X₂ + e is simply the expected change in y as a function of X₁, everything else (meaning: X₂) held constant.
 - in the first model, the slope may be partly due to X_2 .
- 2. Their power is often larger (smaller residual standard error).

ifgi

Correlated errors

When observations are correlated, and cannot be considered independent (e.g. by the random sampling argument), regression can be applied under a more general model that addresses these correlations.

- the structure of the correlation needs to be assessed
 - correlation in space: a function of spatial distance?
 - correlation over time: a function of time separation?
 - within-item correlation: e.g. longitudinal studies.
- the magnitude of the correlations needs to be assessed

Generalized linear models

Generalized linear models extend the (multiple) linear regression models by

- not assuming a (free) continuous variable as dependent
- not assuming a Gaussian distribution for the residuals

Examples:

- logistic regression: dependent variable is 0/1 (absence/presence)
- Iog-linear models: dependent variable is a count (Poisson)
- regression on log-transforms: the logarithm of y is taken instead of y

These models are very common in ecology.

R-squared and adjusted R-squared

Coefficient of multiple correlation:

$$R^{2} = \frac{\sum_{i=1}^{n} (\hat{Y}_{i} - \bar{Y})^{2}}{\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}}$$

Adjusted R^2 :

$$\bar{R}^2 = rac{(n-1)R^2 - k}{n-k-1}$$

with n the number of observations, and k the number of parameters fitted.

ifgi