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Point estimation vs interval estimation

I Point estimation is e.g. giving X̄ as an estimate of µ

I Obviously, we try always to give the “best” point estimate

I “best” usually has some mathematical connotation: least
squares, minimum variance, best linear, maximum likelihood,
maximum a-posteriory probability, ...

I A more complete picture is given by the interval estimate,
where we give the range of likely values for the target
parameter (e.g. µ), given sampling error

I this is usually done with a confidence interval that has a
certain probability coverage (e.g. 95%)

I probability refers to sampling error/repeated sampling, not to
the population parameter (such as µ)
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Confidence intervals, σ known
We saw that

Pr(X̄ − 1.96SE < µ < X̄ + 1.96SE) = 0.95

and we can call this a 95% confidence interval.
The essence is that we have limited knowledge about µ, and this is
what we can say about it, based on sampling data.
Other probabilities can also be obtained. Let α be the probability
that the confidence interval does not cover the true value, in this
case 0.05.
zα/2 is the value of the standard normal curve below which α/2
probability lies. Then we obtain a confidence interval with 1− α
probability coverage by

[X̄ + zα/2SE, X̄ + z1−α/2SE]

(Note that zα/2 is negative.)
Values for α:

I α should be small, not larger than .1 for the word ”confidence”
to make sense

I Other values might be 0.1, 0.01, 0.001
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Confidence intervals, σ known – example

A 99% confidence interval for Length, assuming σ = 11:

> load("students.RData")

> attach(students)

> m = mean(Length)

> sd = 11

> se = sd/sqrt(length(Length))

> alpha = 0.01

> c(m + qnorm(alpha/2) * se, m + qnorm(1 - alpha/2) * se)

[1] 175.7123 180.3548

> alpha = 0.05

> c(m + qnorm(alpha/2) * se, m + qnorm(1 - alpha/2) * se)

[1] 176.2673 179.7998

> alpha = 0.1

> c(m + qnorm(alpha/2) * se, m + qnorm(1 - alpha/2) * se)

[1] 176.5513 179.5158



Confidence intervals, σ unknown

What to do if σ is not known (and in real life, it isn’t)?
We know that if n is large, we can estimate σ quite well with the
sample standard deviation s. If however n is small, the
approximation is worse.
We need a distribution that is like the normal distribution, but
wider for smaller n. This is what the t-distribution does.

> sd = sqrt(var(Length))

> n = length(Length)

> se = sd/sqrt(n)

> alpha = 0.05

> c(m + qnorm(alpha/2) * se, m + qnorm(1 - alpha/2) * se)

[1] 176.2752 179.7919

> c(m + qt(alpha/2, n - 1) * se, m + qt(1 - alpha/2, n -

+ 1) * se)

[1] 176.2607 179.8064
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small sample size:

> L10 = Length[1:10]

> m = mean(L10)

> se = sqrt(var(L10)/10)

> c(m + qnorm(alpha/2) * se, m + qnorm(1 - alpha/2) * se)

[1] 159.7252 162.8748

> c(m + qt(alpha/2, 9) * se, m + qt(1 - alpha/2, 9) * se)

[1] 159.4824 163.1176

> L5 = Length[1:5]

> m = mean(L5)

> se = sqrt(var(L5)/5)

> c(m + qnorm(alpha/2) * se, m + qnorm(1 - alpha/2) * se)

[1] 158.4666 159.9334

> c(m + qt(alpha/2, 4) * se, m + qt(1 - alpha/2, 4) * se)

[1] 158.1611 160.2389



The normal assumption

I When computing confidence intervals based on the normal
distribution (σ known) or t-distribution (σ unknown) we
assume normality. But normality of what?

I NOT of the data, Xi , but

I of the estimation error of the mean, X̄ − µ
I When is this assumption justified?

1. when the data are (close to) normally distributed OR
2. when the sample size is large enough

I when is a sample large enough? (usually: n > 30)
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An example where it does not work out:

gamma distribution, shape = 0.05

rgamma(1000, 0.05)
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means of random samples with size 50: still far from normal

apply(replicate(1000, rgamma(50, 0.05)), 2, mean)
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Why does this normality thing work?

The central limit theorem:
Loosely, this theorem states that if we take a sum of n independent
random variables with an arbitrary distribution,

Y =
n∑

i=1

Xi

then, when n grows larger, then the distribution of Y will converge
to a normal distribution. As the mean is also a sum, this applies to
sample means. How fast is the convergence?
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CI for the difference in means; independent samples

Suppose we have two samples, and are interested in the difference
in their means. We can now for a confidence interval for µ1 − µ2

What is the standard eror for X̄1 − X̄2? Suppose σ1 = σ2, then

SE =

√
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2
[

1

n1
+

1

n2
]

and the 95% confidence interval is

Pr((X̄1 − X̄2)− tdf ,αSE ≤ µ1 − µ2 ≤ (X̄1 − X̄2) + tdf ,αSE) = .95

The usual interest lies in whether this interval contains zero.



CI for the difference in means; independent samples

> t.test(Length ~ Gender, var.equal = TRUE)

Two Sample t-test

data: Length by Gender

t = -11.07, df = 147, p-value < 2.2e-16

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-17.84502 -12.43874

sample estimates:

mean in group female mean in group male

168.6842 183.8261



CI for the difference in means; paired samples

Paired samples: a single object has been measured twice (usually
at two moments, or ”before” and ”after” treatment)

obj t1 t2
1 13.5 12.7
2 15.3 15.1
3 7.5 6.6
4 10.3 8.5
5 8.7 8.0

> x1 = c(13.5, 15.3, 7.5, 10.3, 8.7)

> x2 = c(12.7, 15.1, 6.6, 8.5, 8)

> x1 - x2

[1] 0.8 0.2 0.9 1.8 0.7



> t.test(x1, x2, var.equal = TRUE)

Two Sample t-test

data: x1 and x2

t = 0.4066, df = 8, p-value = 0.695

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-4.111314 5.871314

sample estimates:

mean of x mean of y

11.06 10.18

> t.test(x1 - x2)

One Sample t-test

data: x1 - x2

t = 3.3896, df = 4, p-value = 0.02754

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

0.1591929 1.6008071

sample estimates:

mean of x

0.88



CI for (difference in) proportions

Proportions: use figure on page 274 (W&W) Large sample
approximation:

P ± 1.96

√
π(1− π)

n

by substituting P for π (for a conservative interval, i.e. worst case,
substitute 0.5 for π).
Difference in proportions, large sample approximation:

Pr((P1 − P2)− 1.96SE ≤ π1 − π2 ≤ (P1 − P2) + 1.96SE) ≈ .95

with SE =
√

P1(1−P1)
n1

+ P2(1−P2)
n2



Ratio’s of variances: F distribution

I Suppose we have two samples, and are interested whether
they come from two populations having different variances, i.e.
σ1 6= σ2. Let sample 1 be the group with the larger variance.
The F distribution describes the ratio of two sample variances
under H0 : σ1 = σ2.

I Under the hypothesis that σ1 = σ2, the ratio
s2
1

s2
2

follows the F

distribution with n1 and n2 degrees of freedom.

I Suppose that s2
1 = 9, s2

2 = 3 n1 = 20, n2 = 30, so the sample
variance ratio is 9/3=3.
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> qf(0.95, 20, 30)

[1] 1.931653

> v1 = var(Length[Gender == "male"])

> v2 = var(Length[Gender == "female"])

> v1

[1] 42.51887

> v2

[1] 103.7556

> v2/v1

[1] 2.440226

> qf(0.95, length(Length[Gender == "female"]), length(Length[Gender ==

+ "male"]))

[1] 1.468575



> t.test(Length ~ Gender, var.equal = TRUE)

Two Sample t-test

data: Length by Gender

t = -11.07, df = 147, p-value < 2.2e-16

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-17.84502 -12.43874

sample estimates:

mean in group female mean in group male

168.6842 183.8261

> t.test(Length ~ Gender)

Welch Two Sample t-test

data: Length by Gender

t = -10.0226, df = 84.687, p-value = 4.809e-16

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-18.14586 -12.13789

sample estimates:

mean in group female mean in group male

168.6842 183.8261
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