Introduction to Geostatistics

8. Formal testing. One-sample tests; two-sample tests; difference in means; difference in proportions. p-values, significance, Type-I errors. One-sided and two-sided tests.

Edzer J. Pebesma

edzer.pebesma@uni-muenster.de Institute for Geoinformatics (ifgi) University of Münster

summer semester 2007/8, June 11, 2009

Field work

One-day measurement campaign, in couples of two, to address

- device a research question
- planning of a sampling scheme
- doing the sampling
- entering samples in the computer
- statistical analysis (graphs, confidence intervals, tests)
- (brief) reporting

Hypothesis testing

Suppose we have the two-sample example, and ask if in the population group A has a mean that differs significantly from that of group B. The approach we've seen last week is to form a confidence interval for the difference $\mu_A - \mu_B$, and check if this overlaps zero. If not, then the means differ significantly. Given two random samples, \bar{X}_A and \bar{X}_B will always differ, but the difference can be due to

- if $\mu_A = \mu_B$: chance (random sampling),
- if $\mu_A \neq \mu_B$: difference in population means + chance

A formal testing procedure

- 1. Hypotheses: formulate H_0 and H_A
- 2. Sample size
- 3. Significance level
- 4. Sampling distribution of test statistics (Prüfgröße)
- 5. Critical region
- 6. Test statistic
- 7. Conclusion

One-sample test

For example, for the students Length data, test whether the population mean might be 175 cm.

- 1. $H_0: \mu = 175, H_A: \mu \neq 175$
- 2. *n* = 86
- **3**. $\alpha = 0.05$
- 4. Sampling distribution of test statistics: *t*-distribution with n-1=85 degrees of freedom
- 5. Critical region: from $t_{0.025,85} = -1.99$, to $t_{0.975,85} = 1.99$, so any *t* outside [-1.99, 1.99] leads to rejecting H_0
- 6. $t = (\bar{X} \mu)/SE = 2.61198$
- 7. Conclusion: t is in the critical region, so we can reject H_0

Meaning that the sample mean is significantly different from the hypothesized value.

Significant: meaningful, not a result from chance

Testing by using confidence intervals

As seen in the previous lecture, the 95% confidence interval for the sample mean is

```
[175.7803, 180.7546]
```

If H_0 does not lie in the central 95% confidence interval, we can reject it.

Note the following

- confidence intervals are on the scale of \bar{X} and μ , test values always on the scale of t, z, etc
- confidence intervals immediately show all the H₀ that would be rejected, and those that would not
- steps 5 and 6 are different: whereas the CI approach uses the critical t and SE to find the boundaries to compare H₀ against, formal tests compare the t test statistic against a critical t value.

ifgi

By computer:

```
> load("students.RData")
> attach(students)
> t.test(Length, mu = 175)
        One Sample t-test
data: Length
t = 3.3814, df = 148, p-value = 0.0009227
alternative hypothesis: true mean is not equal to 175
95 percent confidence interval:
 176.2607 179.8064
sample estimates:
mean of x
 178.0336
Where is \alpha?
Statistics programs (such as R) do not ask for an \alpha, but rather
give a p-value. This is the probability of wrongly rejecting H_0.
                                                                    ifgi
If p-value < \alpha, you reject H_0, else you do not reject H_0.
```

About not rejecting H_0

Not rejecting H_0 does never mean that H_0 is true, but merely that it is not in conflict with the data. As the confidence interval shows, there is a large collection of H_0 hypotheses possible, i.e. in agreement with the data, so claiming there is one that is true is quite opportunistic. Furthermore, a so-called *point-hypothesis* such as H_0 : $\mu = 175$ is quite unlikely to ever be true, as it means $\mu = 175.00000000...$

Two-sample tests

E.g. difference in means:

- Step 1: $H_0: \mu_1 = \mu_2$, and
- Step 4: $t = \frac{\bar{X}_1 \bar{X}_2}{SE}$ follows a *t* distribution
- ► SE: see confidence intervals
- \blacktriangleright ... with the assumption that $\sigma_1^2=\sigma_2^2$

Type I and Type II errors

Of course we take a risk to wrongly rejecting a true H_0 , of α . There's however also a risk that we wrongly *not* reject a false H_0 , which is called β .

	Truth	
Test result	H ₀ true	H_0 false
Reject H ₀	Type I error, α	ΟK, (1-β)
Do not reject H_0	ΟΚ (1- <i>α</i>)	Type II error, eta

 β can be controlled by *n*, and is smaller for larger *n*. You can compute β under a given H_A (WW: 302-307; next week more on this)

One-sided vs. two-sided tests

Usually the H_A is a simple denial of H_0 , as in $H_0: \mu_1 = \mu_2$ $H_A: \mu_1 \neq \mu_2$ (implying $\mu_1 < \mu_2$ or $\mu_1 > \mu_2$) We might however be interested in only one type of alternative, e.g. $H_A: \mu_1 < \mu_2$ In that latter case, as $t = \frac{\bar{X}_1 - \bar{X}_2}{SE}$ we can take the critical region as only the negative t values, and ignore the positive ones. The critical region then is then anything below $t_{0.05, n_1+n_2-2}$ Compare this with one-sided confidence intervals.


```
> t.test(Length, mu = 175, alternative = "less")
        One Sample t-test
data: Length
t = 3.3814, df = 148, p-value = 0.9995
alternative hypothesis: true mean is less than 175
95 percent confidence interval:
     -Inf 179.5185
sample estimates:
mean of x
 178.0336
> t.test(Length, mu = 175, alternative = "greater")
        One Sample t-test
data: Length
t = 3.3814, df = 148, p-value = 0.0004614
alternative hypothesis: true mean is greater than 175
95 percent confidence interval:
 176.5486
               Inf
sample estimates:
mean of x
 178.0336
```

