Introduction to Geostatistics

8. Formal testing. One-sample tests; two-sample tests; difference in means; difference in proportions. p-values, significance, Type-I errors. One-sided and two-sided tests.

Edzer Pebesma

edzer.pebesma@uni-muenster.de
Institute for Geoinformatics (ifgi)
University of Münster

June 8, 2010

Exploratory vs. confirmatory research

exploratory starts with a broad research question that might be broadened, collects as much data as possible, searches for relationships

confirmatory starts with a clear hypothesis, collects the necessary data, ends by concluding about the hypothesis

Designed experiments

- 1. device a research question, and a null hypothesis
- 2. plan a sampling scheme
- 3. carry out the sampling
- 4. enter samples in the computer
- 5. statistical analysis (graphs, confidence intervals, tests),
- 6. decide whether null-hypothesis can be rejected
- 7. report

Hypothesis testing

Suppose we have the two-sample example, and ask if in the population group A has a mean that differs significantly from that of group B. The approach we've seen last week is to form a confidence interval for the difference $\mu_A - \mu_B$, and check if this overlaps zero. If not, then the means differ significantly. Given two random samples, \bar{X}_A and \bar{X}_B will always differ, but the difference can be due to

- if $\mu_A = \mu_B$: chance (random sampling),
- if $\mu_A \neq \mu_B$: difference in population means + chance

A formal testing procedure

- 1. Hypotheses: formulate H_0 and H_A
- 2. Sample size
- 3. Significance level
- 4. Sampling distribution of test statistics (Prüfgröße)
- 5. Critical region
- 6. Test statistic
- 7. Conclusion

ifgi

One-sample test

For example, for the students Length data, test whether the population mean might be 175 cm.

- 1. $H_0: \mu = 175, H_A: \mu \neq 175$
- 2. n = 86
- 3. $\alpha = 0.05$
- 4. Sampling distribution of test statistics: t-distribution with n-1=85 degrees of freedom
- 5. Critical region: from $t_{0.025,85} = -1.99$, to $t_{0.975,85} = 1.99$, so any t outside [-1.99, 1.99] leads to rejecting H_0
- 6. $t = (\bar{X} \mu)/SE = 2.61198$
- 7. Conclusion: t is in the critical region, so we can reject H_0

Meaning that the sample mean is significantly different from the hypothesized value.

Significant: meaningful, not a result from chance

Testing by using confidence intervals

As seen in the previous lecture, the 95% confidence interval for the sample mean is

[175.7803, 180.7546]

If H_0 does not lie in the central 95% confidence interval, we can reject it.

Note the following

- confidence intervals are on the scale of \bar{X} and μ , test values always on the scale of t, z, etc
- ightharpoonup confidence intervals immediately show all the H_0 that would be rejected, and those that would not
- ► steps 5 and 6 are different: whereas the CI approach uses the critical t and SE to find the boundaries to compare H₀ against, formal tests compare the t test statistic against a critical t value.

By computer:

Where did we enter α ?

Statistics programs (such as R) do not ask for an α , but rather give a p-value. This is the probability of wrongly rejecting H_0 . If p-value $< \alpha$, you reject H_0 , else you do not reject H_0 .

About not rejecting H_0

Not rejecting H_0 does never mean that H_0 is true, but merely that it is not in conflict with the data. As the confidence interval shows, there is a large collection of H_0 hypotheses that are likely, i.e. not in disagreement with the data, so claiming that one of them that is true is quite opportunistic (and unscientific). Furthermore, a so-called *point-hypothesis* such as H_0 : $\mu=175$ is unlikely to ever be true, as it means $\mu=175.0000000000...$

Two-sample tests

E.g. difference in means:

- Step 1: $H_0: \mu_1 = \mu_2$, and
- ► Step 4: $t = \frac{\bar{X}_1 \bar{X}_2}{SF}$ follows a t distribution
- ▶ SE: see confidence intervals for difference of means
- ... with the assumption that $\sigma_1^2 = \sigma_2^2$

Type I and Type II errors

Of course we take a risk to wrongly rejecting a true H_0 , with probability α .

Why not make α go to 0, so we never wrongly reject? There's another a risk that we wrongly *not* reject a false H_0 , which is called β .

	Truth	
Test result	H₀ true	H_0 false
Reject H ₀	Type I error, α	OK, $(1-\beta)$
Do not reject H_0	OK $(1-\alpha)$	Type II error, β

 β can be controlled by n, and is smaller for larger n. You can compute β under a given H_A (WW: 302-307; next week more on this)

One-sided vs. two-sided tests

Usually the H_A is a simple denial of H_0 , as in

 H_0 : $\mu_1 = \mu_2$

 H_A : $\mu_1 \neq \mu_2$ (implying $\mu_1 < \mu_2$ or $\mu_1 > \mu_2$)

We might however be interested in only one type of alternative, e.g.

 H_A : $\mu_1 < \mu_2$

In that latter case, as $t = \frac{\bar{X}_1 - \bar{X}_2}{SE}$ we can take the critical region as only the negative t values, and ignore the positive ones. The critical region then is then anything below $t_{0.05,n_1+n_2-2}$ Compare this with one-sided confidence intervals.


```
data: Length
t = 3.3814, df = 148, p-value = 0.9995
alternative hypothesis: true mean is less than 175
95 percent confidence interval:
     -Inf 179.5185
sample estimates:
mean of x
 178.0336
> t.test(Length, mu = 175, alternative = "greater")
        One Sample t-test
data: Length
t = 3.3814, df = 148, p-value = 0.0004614
alternative hypothesis: true mean is greater than 175
95 percent confidence interval:
 176.5486
               Inf
sample estimates:
                                                                 ifgi
mean of x
 178.0336
> prop.test(1, 5)
        1-sample proportions test with continuity correction
data: 1 out of 5, null probability 0.5
X-squared = 0.8, df = 1, p-value = 0.3711
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
 0.01052995 0.70120895
sample estimates:
  p
0.2
> prop.test(100, 500)
        1-sample proportions test with continuity correction
data: 100 out of 500, null probability 0.5
X-squared = 178.802, df = 1, p-value < 2.2e-16
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
 0.1663581 0.2383462
sample estimates:
0.2
```

> t.test(Length, mu = 175, alternative = "less")

One Sample t-test