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OR SEVEN YEARS A COMMITTEE of the
F British Association for the Advancement of
Science debated the problem of measurement.
Appointed in 1932 to represent Section A (Mathe-
matical and Physical Seiences) and Section J (Psy-
chology), the committee was instructed to consider
and report upon the possibility of “quantitative esti-
mates of sensory events”"—meaning simply: Is it pos-
sible to measure human sensation? Deliberation led
only to disagreement, mainly about what is meant by
the term measurement. An interim report in 1938
found one member complaining that his colleagues
“came out by that same door as they went in,” and in
order to have another try at agreement, the committee
begged to.be continued for another year.

For its final report (1940) the eommittee chose a

vy, Harvard Unii

by the formal (mathematical) properties of the scales.
Furthermore—and this is of great concern to several
of the seiences—the statistical manipulations that ean
legitimately be applied to empirical data depend upon
the type of scale against which the data are ordered.

A CLASSIFICATION OF SCALES OF MEASUREMENT

Paraphrasing N. R. Campbell (Final Report, p.
340), we may say that measurement, in the broadest
sense, is defined as the assignment of numerals to ob-
jeets or events according to rules. The fact that
numerals ean be assigned under different rules leads
to different kinds of scales and different kinds of
measurement. The problem then becomes that of
making explicit (a) the various rules for the assign-
ment of numerals. (b) the mathematical properties
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SUMMARY

Just as there are different interpretations of probability, leading to different kinds of
inferential statements and different conclusions about statistical models and questions, so
there are different theories of measurement, which in turn may lead to different kinds of
statistical model and possibly different conclusions. This has led to much confusion and a
long running debate about when different classes of statistical methods may legitimately be
applied. This paper outlines the major theories of measurement and their relationships and
describes the different kinds of models and hypotheses which may be formulated within
each theory. One general conclusion is that the domains of applicability of the two major
theories are typically different, and it is this which helps apparent contradictions to be
avoided in most practical applications.

Keywords: CLASSICAL MEASUREMENT; MEASUREMENT THEORY; OPERATIONAL
MEASUREMENT; REPRESENTATIONAL MEASUREMENT; STATISTICAL MODELS;
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ABSTRACT

Measurement is commonly divided into nominal, ordinal, interval and
ratio 'scales' in both geography and cartography. These scales have been
accepted unquestioned from research in psychology that had a particular
scientific agenda. These four scales do not cover all the kinds of
measurements common in a geographic information system. The idea of
a simple list of measurement scales may not serve the purpose of
prescribing appropriate techniques. Informed use of tools does not depend
on the nature of the numbers, but of the whole 'measurement
framework’, the system of objects, relationships and axioms implied by a
given system of representation.

Introduction
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Four centuries after René Descartes watched a fly walk across his ceiling and
wondered how to capture its position (Gribbin 2002), we use Cartesian coordinates
routinely to describe locations. We identify the positions of entities in the real world,
transform their GIS representations from one coordinate system to another, and
integrate spatially referenced data across multiple coordinate systems. A theory of
spatial reference systems standardises the notions of geodetic datum, map projections,
and coordinate transformations (ISO 2002). Similarly, our temporal data refer unam-
biguously to temporal reference systems, such as calendars, and can be transformed
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The appropriateness of spatial prediction methods such as Kriging, or aggregation methods such as
summing observation values over an area, is currently judged by domain experts using their knowledge
and expertise. In order to provide support from information systems for automatically discouraging or
proposing prediction or aggregation methods for a dataset, expert knowledge needs to be formalized.
This involves, in particular, knowledge about phenomena represented by data and models, as well as
about underlying procedures. In this paper, we introduce a novel notion of meaningfulness of prediction
and aggregation. To this end, we present a formal theory about spatio-temporal variable types, obser-
vation procedures, as well as interpolation and aggregation procedures relevant in Spatial Statistics.
Meaningfulness is defined as correspondence between functions and data sets, the former representing
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CO, emissions of power plants

Sum of CO, emissions

406842798.1074
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PM,, measurements Sum of PM;, measurements

30482.674

Interpolated CO, emissions

Interpolated PM;, measurements



All data are spatio-temporal

1. There are no pure-spatial data. Maps reflect either
» a snapshot in time (remote sensing image)

> an aggregate over a time period (e.g., interpolated yearly
average temperature, or yearly aggregated daily interpolations)

» something that is constant over a period of time (political
boundary)

» a seemingly non-changing phenomenon (geology)
2. There are no pure-temporal data. Time series reflect either
» spatially aggregated values (global temperature curves)

> a single spatial location (air quality sensor DEUB032, at
8.191934E,50.93033N)

» vaguely located, or universal aggregates (world market prices,
stock quotes)

30



Functions

We can write function y = f(x) as:
f: X—>Y

which means that for any X, we have a corresponding Y.

30



Functions
We can write function y = f(x) as:
f: X—>Y
which means that for any X, we have a corresponding Y.
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is the Carthesian product, the collection of all ordered pairs (z, y)
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Functions

We can write function y = f(x) as:
f: X—>Y
which means that for any X, we have a corresponding Y.
XxY

is the Carthesian product, the collection of all ordered pairs (z, y)
(Wikipedia): “A function f from X to Y is a subset of the
Cartesian product X x Y subject to the following condition: every
element of X is the first component of one and only one ordered
pair in the subset. In other words, for every z in X there is exactly
one element y such that the ordered pair (z,y) is contained in the
subset defining the function f.”
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Functions

We can write function y = f(x) as:
f: X—>Y
which means that for any X, we have a corresponding Y.
XxY

is the Carthesian product, the collection of all ordered pairs (z, y)
(Wikipedia): “A function f from X to Y is a subset of the
Cartesian product X x Y subject to the following condition: every
element of X is the first component of one and only one ordered
pair in the subset. In other words, for every z in X there is exactly
one element y such that the ordered pair (z,y) is contained in the
subset defining the function f.”

X is called the domain, Y the codomain or range



Inverse functions

for a set of values B in the range,
fFAB)=2zc X :f(z)eB
for a single value b in the range,
FU) =w e X f(z) = b

the resulting set may contain any number of elements.
Example: f: X — X2, the range (V) value 4 has corresponding
domain values {—2,2}.
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Reference systems

Reference systems are conventions that encode the shared
understanding of information. Examples are

>

>

spatial (coordinate) reference systems (where is (52,8)7)
temporal reference systems (what does

> Sys.time()

[1] "2014-06-18 08:57:55 CEST"

mean?

attribute reference systems (e.g., UCUM, Unified Code for
Units of Measure)

semantic reference systems (vocabularies, ontologies, R
function index)
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Space, Time, Attribute, ldentity

We will look at the following four reference system domains:

S space
T time

() quality
D discrete

1,2,3-dimensional, e.g. 2D degrees in
WGS84, R? or R?, continuous
1-dimensional or cyclic, R, sometimes 2-
dimensional, continuous

1-dimensional (UCUM), higher-dimensional:
functional, multivariate, also possibly nomi-
nal, ordinal, interval (Stevens’ 1946)
indicating distinct entities (objects, events);
N, IDs, primary key in RDBMS, row number
in data.frame
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Fields

functional form:
(SxT)—=Q

v

Answers: “what is then and there?”

v

Inverting answers: “when/where was that?”

v

Specialisations: S — @, T — @

v

Incarnations: points (sampled field: meuse), contour lines,
coverage

13/30



Field examples: grid, points

log(zinc, ppm), interpolated zinc (ppm)
75
7.0
6.5
6.0
55
50 o [113,458.2]
+ (458:2,803.4]
+ (803.4,1149]
1149.1494]

1494,1839)]



Field examples: lines, polygons

(758]
(7.7.5]
(657]
(665
(556
(555
(455
[4.4.5]



Field: categorical coverage

- Forest
- Pastures and valley

farming

| Permanent crops
(olives, grapes, and citrus)

- Mixed farminE
(grains, horticulture

wineyards, and livestock }

& Tobacco
1] 50 Hilometers
—_—
1] 50 Miles

Qe

16 /30



Non-Field: choropleth, aggregation

o

100-200
200-500
500-1000
1000+

= = = = ©ac
17/30



Non-moving Entities (objects, events)

functional form:
D— (SxTxQ)

(for objects without properties, take @ = 1)
» Specialisations:
» D — (S x Q): spatial point pattern,
» D — (T x Q): temporal point pattern
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Moving entities (objects, events)

functional form:
D—T—(SxQ)
(for objects without properties, take ) = 1)
» generalization of D — (S x T x Q)
> specialisations: D - T — Q, D — § — @
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Support and aggregation

1. we cannot make observations of zero duration, or zero spatial
size; the actual size and duration are the measurement
support (footprint). Think: soil samples, RS cells.

2. often, we want to estimate or compute aggregated values, e.g.
over periods over areas.

3. even more often, the data we get were aggregated, for
convenience (size), or privacy concerns (health data).

20/30
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Particulate matter time series, averaged over station
type

PM,, annual mean (ug/m?) PM, ; annual mean (ug/m?®)

60
25

: e
% _\/
2 /\___\’_ 10

5
0 0
2000 2002 2004 2006 2008 2010 2004 2005 2006 2007 2008 2009 2010 2011
= Rural = Urban = Traffic = Rural = Urban = Traffic
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More complications ...

> “intermediate” phenomena: air quality in street canions
(“traffic”)
> true “hybrid”, 1: time events, spatial fields
» D> ((S—=Q)xT)
» example: election maps
> true “hybrid”, 2: spatial events, time fields
» D= (Sx(T— Q)
» example: emission from power plants
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How to represent, and then store fields?

1.

we NGO R

as functions! Interpolation functions return values at arbitrary
times, moments (gstat: :idw in space, zoo: :na.approx in
time)

. as evaluated (or observed) functions, at

» discretized space, regular raster: :raster or irregular
sp::SpatialPoints, or
> time, regular: stats: :ts, or irregular: zoo: :zoo, xts: :xts

natural would be to use an index that relates to space and/or
time, and records with arbitrarily typed fields — arrays

netcdf, HDF5;

R: array (and raster?) do not support fields of mixed type
R for time: zoo, xts do not support fields of mixed type
R for space: sp::SpatialGridDataFrame do

R for space/time: spacetime does too,

big data array processing engine: SciDB
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How to store objects/events?

Tables are one-dimensional arrays; The Spatial* objects in sp
“behave” like tables (data.frame).

Subsetting like x[3,"zinc"] works for all, except for
SpatialGridDataFrame.
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I will assume you understand this:

> a = data.frame(varA = ¢(1,1.5,2),

+ varB = c("a", "a", "b")) > a["varA"]
> al1,]
varA
varA varB 1 1.0
1 1 a 2 1.5
3 2.0

v

a[1, drop=FALSE]

v

alc("varA", "varB")]

varA
1 1.0 varA varB
2 1.5 1 1.0 a
3 2.0 2 1.5 a
3 2.0 b
> al,1]
> a$varA

[1] 1.0 1.5 2.0
[1] 1.0 1.5 2.0

> al1]
> a$vard <- 3:1
varA >a
1 1.0
2 1.5 varA varB
3 2.0 1 3 a
2 2 a
> all1]] 3 1 b

[1] 1.0 1.5 2.0



Functional programming

> do it: learn apply, lapply, do.call,

> program generically, e.g. aggregate
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Time, Time Series Data

Boobd=

POSIXt, Date, yearmon, yearqtr
zoo, Xts, 7aggregate
forecast, ...

see Task View
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Space, Spatial Data

Spatialx*, raster,

rgdal, rgeos

see Task View

selecting records, variables

selecting based on spatial match
sp::aggregate

vignette("over") (or see CRAN page)

NSO AN -

edit(vignette("over")), run, modify, run
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Space-time, Spatiotemporal Data

© 0k wbdH=

spacetime, ST*, also raster,

back ends: PostGIS, TGRASS, SciDB
combines sp and xts

selection, aggregation

go through spacetime vignettes

see Task View
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