Incentives and Rewards in Scientific Software Communities

Edzer Pebesma

Software and Services for Science (S3),
Second Conference on Non-Textual Information,

TIB Hannover, May 10-11, 2017
Who am I?

1997- contributor of open source software,
2003- active developer in, and member of, the R community
2007- professor at the Institute for Geoinformatics, Münster
2014- co-editor-in-chief of *Computer & Geosciences*
2015- co-editor-in-chief of *Journal of Statistical Software*
2015- associate editor for *Spatial Statistics*
2016- co-PI in a DFG-funded project *Opening Reproducible Research* http://o2r.info
2016- blogger on http://r-spatial.org, active twitter user
Scientists...

- try to discern facts from false facts
- try to find consensus about this,
- do this by a public discourse,
- use methods about which a shared understanding exists
- (should) strive, in communication, for ultimate transparency

⇒ Communication is a key activity for scientists
Scientists...

- try to discern *facts* from *false facts*
- try to find consensus about this,
- do this by a public discourse,
- use methods about which a shared understanding exists
- (should) strive, in communication, for ultimate transparency

⇒ Communication is a key activity for scientists
Successful Scientists...

are those

▶ who other people listen to
 ⇒ attention: publications, citations, grants
 ⇒ reputation: cumulative attention

▶ whose work is being reused a lot
 ⇒ proxies: # citations, h-index
The most cited papers...

according to Van Noorden et al.,\(^1\), the most cited paper is

- Lowry et al., 1951, *Protein measurement with the folin phenol reagent*

and most cited papers are often

- not the ones describing discoveries, or big scientific breakthroughs
- papers that describe methods, or *tools* that everyone uses
 - first sequenced human genome
 - a particular method/tool used by a large domain
 - software tools that make things possible, and are understood

\(^1\)http://www.nature.com/news/the-top-100-papers-1.16224
R history

History:

1976-1988 S (AT&T)
1988-2007 S-Plus (Lucent, Insightful, Tibco)
1997- R
2013- TERR, ...

Parallel history: ftp sites like netlib, StatLib
https://www.r-project.org/:
“R is a free software environment for statistical computing and
graphics. It compiles and runs on a wide variety of UNIX
platforms, Windows and MacOS.”
R history

History:

1976-1988 S (AT&T)
1988-2007 S-Plus (Lucent, Insightful, Tibco)
 1997- R
 2013- TERR, ...

Parallel history: ftp sites like netlib, StatLib

https://www.r-project.org/:
“R is a free software environment for statistical computing and graphics. It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS.”
R history

History:

1976-1988 S (AT&T)

1988-2007 S-Plus (Lucent, Insightful, Tibco)

1997- R

2013- TERR, ...

Parallel history: ftp sites like netlib, StatLib

https://www.r-project.org/:

“R is a free software environment for statistical computing and graphics. It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS.”
R, the R community

- R started off by computer scientists/statisticians (who needed it most)
- S’s original goal: interact with data, programatically
- R evolved from a group of people using (extending) S-Plus, into a group of people who believed they didn’t need S-Plus for this
- R is statistics oriented, but domain agnostic (empirical sciences)
- R started as a research project – “can we do this?”
R, the R community

- R started off by computer scientists/statisticians (who needed it most)
- S’s original goal: interact with data, programatically
- R evolved from a group of people using (extending) S-Plus, into a group of people who believed they didn't need S-Plus for this
- R is statistics oriented, but domain agnostic (empirical sciences)
- R started as a research project – “can we do this?”
R packages

- R can be easily extended by *R packages*, software libraries for all kind of purposes; *methods, classes, interfaces*.

- CRAN, the Comprehensive R Archive Network, is a network of 50+ mirrored servers serving R source and binary distros (currently maintained by 21 authors), and now over 10,000 R packages, maintained by around 8000 authors.

- CRAN only accepts R packages in source code form, and keeps an archive of source code of all accepted versions

- CRAN compiles binary R packages (containing e.g. C or C++ code) for Windows and Mac OS-X platforms

- Binary packages contain statically linked external dependencies

- When R changes, package maintainers may have to update their package; if they don’t, after some time, packages are “archived”: no longer visible or offered in binary form.

- Unresponsive authors may cause packages to become orphaned; these may be adopted by new maintainers.
Package dependencies

- many packages reuse other packages, esp. those that
 - provide basic infrastructure (time series, spatial, omics, plotting, web services)
 - give access to a popular analysis method
 - interface e.g. databases, web services, file formats, other programming languages
 - make life easier

- my package A can depend on your package B
- making my package depend on someone else’s is an expression of trust, similar to citing a paper as being a foundation for a certain idea, but with more dynamic risks:
 - package B might change its interface
 - changes in R may cause package B to fail
 - the author of package B might stop maintaining it

all potentially causing my package A to fail

- CRAN lists reverse dependencies, and gives access to the dependency graph
Updated #rstats dependencies map of CRAN (original by @RevoAndrie see blog.revolutionanalytics.com/2015/07/the-ne...)
pic.twitter.com/4hXpnu8O4A
Reproducibility

Reproducibility is an important aspect of scientific research, because the credibility of science is at stake when research is not reproducible\(^2\).

the statistical community is quite apt to warrant reproducibility:
- methods underpin arguments, underpin decisions
- it helps argument this is about science, not engineering
- R, R scripts, and data files, are a way to secure this

Will the script still run, 10 years from now?

\(^2\)Eos, Vol. 93, No. 16, 17 April 2012
Reproducibility

Reproducibility is an important aspect of scientific research, because the credibility of science is at stake when research is not reproducible\(^2\).

the statistical community is quite apt to warrant reproducibility:

- methods underpin arguments, underpin decisions
- it helps argument this is about science, not engineering
- R, R scripts, and data files, are a way to secure this

Is data + R script (with R & package versions) enough?
paper + frozen versions: http://www.JStatSoft.org
Will the script still run, 10 years from now?

\(^2\)Eos, Vol. 93, No. 16, 17 April 2012
Reproducibility

Reproducibility is an important aspect of scientific research, because the credibility of science is at stake when research is not reproducible\(^2\).

The statistical community is quite apt to warrant reproducibility:
- methods underpin arguments, underpin decisions
- it helps argument this is about science, not engineering
- R, R scripts, and data files, are a way to secure this

Is data + R script (with R & package versions) enough?
paper + frozen versions: \url{http://www.JStatSoft.org}
Will the script still run, 10 years from now?

\(^2\)Eos, Vol. 93, No. 16, 17 April 2012
Reproducibility

Reproducibility is an important aspect of scientific research, because the credibility of science is at stake when research is not reproducible\(^2\). The statistical community is quite apt to warrant reproducibility:

- methods underpin arguments, underpin decisions
- it helps argument this is about science, not engineering
- R, R scripts, and data files, are a way to secure this

Will the script still run, 10 years from now?

\(^2\)Eos, Vol. 93, No. 16, 17 April 2012
Reproducibility is an important aspect of scientific research, because the credibility of science is at stake when research is not reproducible2.

the statistical community is quite apt to warrant reproducibility:

\begin{itemize}
 \item methods underpin arguments, underpin decisions
 \item it helps argument this is about science, not engineering
 \item R, R scripts, and data files, are a way to secure this
\end{itemize}

Is data + R script (with R & package versions) enough?

paper + frozen versions: http://www.JStatSoft.org

Will the script still run, 10 years from now?

2Eos, Vol. 93, No. 16, 17 April 2012
“Opening Reproducible Research”

2-year DFG-funded, 2016-2017, LIS “Open Access Transformation”; Kray, ULB, me.

- can papers be made executable? ⇒ executable research compendium, ERC
- how can data, software and procedures be encapsulated? ⇒ docker containers
- how can data + software + scripts be handled in the publication cycle?
- how can a library offer a service for validating and archiving ERCs?
- which interactions would scientists like to make available, or have, with ERCs?
- how can we make it attractive to publish reproducibly?

http://o2r.info

\[^3\] http://www.dlib.org/dlib/january17/nuest/01nuest.html
Sustainability

Will R and CRAN exist, 10 or 20 years from now?

- 20 maintainers have write R access to R, largely academics
- R foundation has 37 members; manages copyrights, legal, financial
- R community is keen on cooperation and communication
- yearly UseR! conferences, many domain specific conferences
- strong increase in submissions to JStatSoft and The R Journal
- strong increase in number of R related books
- R consortium (industry) funds/supports local R user groups, satuRdays, Rladies, community infrastructure projects
- rise of “data science”: chairs, and study programs
Referencing scientific software

Default citation entry:

> citation("rgdal")
To cite package ‘rgdal’ in publications use:
Roger Bivand, Tim Keitt and Barry Rowlingson (2017). rgdal: Bindings for the Geospatial Data Abstrac-

A BibTeX entry for LaTeX users is ...

Custom citations (author added):

> citation("gstat")
To cite package gstat in publications use:
30: 683-691.
The R Journal 8(1), 204-218

Default package citations end up in google scholar.
What are the requirements to a software paper?
JORs, JOSS, R Journal, JStatSoft, ...
Referencing scientific software

Default citation entry:

> citation("rgdal")
To cite package ‘rgdal’ in publications use:

A BibTeX entry for LaTeX users is ...

Custom citations (author added):

> citation("gstat")
To cite package gstat in publications use:
Benedikt Gräler, Edzer Pebesma and Gerard Heuvelink, 2016. Spatio-Temporal Interpolation using gstat. The R Journal 8(1), 204-218

Default package citations end up in google scholar.

What are the requirements to a software paper?
 JORS, JOSS, R Journal, JStatSoft, ...
Trends in R programming practice

- byte compiler; large objects, distributed computing
- `stringsAsFactors = TRUE`
- R. Peng: ... R is [now] being used by a very wide variety of people doing all kinds of things the creators of R never envisioned. [Link](http://simplystatistics.org/2015/07/24/stringsasfactors-an-unauthorized-biography/)
- H. Wickham, tidyverse: ... These days, making factors automatically is no longer so helpful, so packages in the tidyverse never create them automatically.¹
- base graphics vs. plotting using packages.

⁴[Link](http://forcats.tidyverse.org/)
Software sharing and legal aspects.

- documentation, tracing of OS licenses (important esp. for commercial R runtime providers)
- CRAN repository policy:
 ⇒ (implicit) contract between CRAN and authors
 ⇒ “The ownership of copyright and intellectual property rights of all components of the package must be clear and unambiguous”
 ⇒ “The package’s DESCRIPTION file must show both the name and email address of a single designated maintainer (a person, not a mailing list).”
- contributed packages use weak authentication (confirmation by email): similar to journals, ORCID etc; discussions on code signing (X.509 or PGP?)

5https://cran.r-project.org/web/packages/policies.html
Conclusions

- The R community is a healthy, growing community that fills lots of demands that scientists have
- it stimulates to work reproducibly, by offering a sustainable infrastructure
- tensions between progressives and conservatives are here too, naturally
- there’s still a lot to do to make scientists
 - share data, scripts, workflows along with publications
 - work reproducibly
 - properly cite the software they used
 - write (better) software
- we now address lots of these challenges at the educational (BSc, MSc) level