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A B S T R A C T

Remote sensing is increasingly being used by non-profit organizations and international initiatives to localize
and document combat impacts such as conflict damage. Most of the practical applications rely on labor-intensive
and time-consuming manual image analysis. Even when using crowdsourcing or volunteer networks, the
workload can quickly become challenging when larger areas have to be monitored over longer time periods. In
this paper, we propose an approach that combines automatic change detection methods with collaborative
mapping in a web application for conflict damage assessment in Darfur, Sudan. Settlement areas are auto-
matically detected and searched for destructed dwelling structures by geographic object-based image analysis
(GEOBIA). The web application prioritizes these areas based on the detected degree of destruction to guide
human analysts to the most important locations. In a user experiment with 30 participants we evaluated the
performance of volunteers with and without the automatic prioritization and investigated their mapping se-
quences. Participants who were guided by the prioritization detected 70.7% more target objects than partici-
pants mapping without guidance, who invested parts of their mapping time in examining locations that show
little to no destruction.

1. Introduction

1.1. Motivation

The use of satellite-based remote sensing for the monitoring and
documentation of violent conflicts has strongly increased in recent
years. The growing availability of satellite imagery enables visual ac-
cess to areas that are hard to reach or too insecure to be covered by
ground-based monitoring (Witmer, 2015; Wolfinbarger & Wyndham,
2011). Non-profit organizations and international initiatives are in-
creasingly using these opportunities, e.g., to localize and document
conflict damage, to corroborate on-the-ground reports on atrocities or
even to report signs of likely upcoming hostilities (see, for example,
American Association for the Advancement of Science, 2014b; Amnesty
International, 2016; Harvard Humanitarian Initiative, 2012; United
Nations Institute for Training and Research, 2011). The main goal often
is to put pressure on involved actors through increasing public aware-
ness (Livingston, 2015) and to eventually influence their behavior. In
addition, remote sensing has also received attention as an investigatory
tool by international judicial bodies such as the International Court of
Justice (ICJ) or the International Criminal Court (ICC, see
(Wolfinbarger, 2016). Another important application of remote sensing

in conflicts is the monitoring of cultural heritage. The destruction of
heritage sites due to, e.g., deliberate attacks or looting is a recurring
issue during violent conflicts or phases of political instability (Kila,
2016). Satellite imagery has been used to investigate and document the
loss of cultural heritage or to assess threats to archaeological sites in a
number of countries (see, e.g., American Association for the
Advancement of Science, 2014a; Banks, Fradley, Schiettecatte, &
Zerbini, 2017; Bewley et al., 2015).

Most of the current practical applications of remote sensing in
conflicts rely on manual image analysis by trained experts. This analysis
is labor-intensive and time-consuming, especially when analyst re-
sources are limited (Meier, 2011b). One strategy to cope with the im-
mense workload is to distribute it among a larger number of volunteers
in crowdsourcing applications, some of which are described in the
following section.

However, the manual analysis of remote sensing images remains a
labor-intensive task, especially when larger areas have to be monitored
over longer time periods or when analysis tasks are more complex (e.g.,
requiring analysts to compare images from two dates). Even for vo-
lunteer networks, the workload can be challenging, not least because
only a certain percentage of volunteers is available at any given time
(Meier, 2011b).
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Another approach is to use automatic image processing on remote
sensing data to analyze conflict areas. Automatic classification and
change-detection methods, for example, have been developed for
finding and analyzing combat impacts such as damaged and destroyed
building structures (Pagot & Pesaresi, 2008; Sulik & Edwards, 2010),
direct and indirect environmental effects of conflicts (Abuelgasim, Ross,
Gopal, & Woodcock, 1999; Nackoney et al., 2014), or population dis-
placement and refugee camp evolution (Lang, Tiede, Hölbling, Füreder,
& Zeil, 2010).

An important concern in this context is how to effectively and re-
sponsibly integrate such methods into workflows of conflict monitoring
and analysis. The documentation of conflict impacts, and especially of
possible human rights violations, is a precarious field. There is broad
consent that reported results in this field should be of highest possible
accuracy (Orentlichter, 2016), not least because of the severe allega-
tions they might lead to and the possible consequence of raising false
charges (Blitt, 2004; Groome, 2011). Due to the uncertainty of auto-
matic image analysis, the results should not be used as unmediated
evidence in this context. Nonetheless, they can support processes of
human rights reporting especially with regard to workload and effi-
ciency in monitoring of larger areas. Several authors have argued for
developing approaches to combine automatic image analysis with col-
laborative mapping for the investigation of conflict areas (see, for ex-
ample, Meier, 2011b; Witmer, 2015).

In this paper we present an approach for such a hybrid detection
method to increase the efficiency of manual image interpretation in
conflict damage assessment. The proposed framework combines auto-
matic image analysis with a microtasking approach for collaborative
mapping that is implemented as a web application. We apply geo-
graphic object-based image analysis (GEOBIA) to automatically de-
termine the degree of destruction in a conflict area. Based on this es-
timation, the web application coordinates the analyses of subsets by
guiding analysts to those areas that contain most important informa-
tion. We conduct a user experiment to investigate the mapping se-
quence and performance of volunteers and to compare the investigation
with and without guidance through automatic prioritization of subsets.

1.2. Background

The advent of new information and communication technologies
has had a huge impact on the humanitarian and human rights sectors.
The workflows of NGOs have been changed in several facets, e.g. the
collection and processing of information, the way humanitarian re-
sponse is organized, and the array of involved actors (Meier, 2011b).
For example, volunteers can support relief operations after disasters by
issuing situation reports and help requests via SMS, social media, email
and other, or by mapping affected areas based on remote sensing
images. Prominent examples include the mapping campaign in the
aftermath of the Haiti earthquake in 2010 (Heinzelman & Waters, 2010;
Hester, Shaw, & Biewald, 2010), the efforts by the Humanitarian
OpenStreetMap Team (HOT) after the earthquake in Nepal in 2015
(Poiani, dos Santos Rocha, Degrossi, & de Albuquerque, 2016) and
many others. The Missing Maps project even engages volunteers in the
preventative mapping of vulnerable, sparsely mapped areas in order to
have high quality spatial data in place immediately when a disaster
strikes (Herfort, Eckle, & de Albuquerque, 2016).

This increasing involvement of volunteers can also be observed in
the field of fact-finding for human rights and international law.
Traditionally the practice of gathering testimony through interviews of
witnesses and victims is the main tool to gather information on human
rights issues (see, for example, UN Commission of Inquiry on the Syrian
Arab Republic, 2016), but new techniques exploiting, e.g., social media,
Geographic Information Systems (GIS) and remote sensing are in-
creasingly being used (Alston & Knuckey, 2016; Aronson, 2016).

One of the earliest examples is the Ushahidi platform, which was
developed in 2008 to document human rights violations during the

post-election violence in Kenya. It allowed witnesses and victims to
report incidents via web-form, email or SMS. The reports were com-
bined with additional information to build a crisis map that was up-
dated in near-real time (Okolloh, 2009). The Ushahidi platform has
since then been used in a large number of deployments in various
scenarios such as the Libya Crisis Map 2011 (Burns, 2014).

An important notion of this development is that it is not merely
about enlarging the workforce through the recruitment of volunteers or
increasing efficiency by use of new technologies. It also opens up the
documentation process to ordinary individuals including those directly
impacted by conflicts, thus turning subjects into agents (Land, 2016).

A common strategy to involve volunteers in conflict documentation
is collaborative mapping in satellite images using a microtasking ap-
proach. Here, the images are divided into a regular grid of smaller
subsets that can be investigated individually (Barrington et al., 2011).
Different conflict mapping projects have engaged in using volunteers
for mapping conflict related issues such as emerging of refugee shelters
in Somalia (Meier, 2011a). Amnesty International applied a crowd-
sourcing approach to map remote settlements in Darfur (Amnesty
International, 2017a) and, in a follow-up project, monitor changes in
those settlements (Amnesty International, 2017b).

The volunteer projects and communities are usually not focused
only on conflict but engage in all kinds of crises (e.g., natural disasters).
They differ in terms of size and their organizational form, ranging from
networks of trained volunteers with organizing principles such as task
sharing, a code of conduct or specific activation criteria (e.g., the
Standby Task Force1 or the GISCorps2) to open microtasking and
crowdsourcing platforms where everyone can contribute on an ad hoc
basis (e.g., Tomnod3 or the HOT Tasking Manager4).

Volunteer networks have also partnered with microtasking plat-
forms and satellite imagery vendors. In these examples, the former
mobilized the volunteer workforce while the ladder provided the
technological platform for the collaborative mapping and the satellite
imagery to conduct the analysis on (Meier, 2013).

An important question for such platforms is how to divide, select,
and prioritize tasks such that individual volunteers can efficiently
contribute to the overall goal. Previous research on prioritizing tasks for
collaborative mapping has been conducted in a natural disaster sce-
nario (Hu, Janowicz, & Couclelis, 2016). The prioritization in this case
relied on additional information on road networks. The concept applied
information value theory to determine priorities of areas with regard to
road connectivity for relief trips into disaster affected areas.

2. Analysis framework

The approach proposed in this paper is to leverage the capabilities
of automatic image analysis to support the manual conflict damage
assessment in remote sensing images. For this purpose, two aspects are
considered. First, automatic algorithms can be used to reduce the areas
of interest for a specific investigation. This is specifically important in
large, rural regions where the areas of interest, i.e. the areas possibly
affected by conflict, cannot be clearly defined a priori. This is also the
case in our study area, Darfur, where small settlements are spread over
wide areas and the locations of these settlements are sometimes very
difficult to determine (American Association for the Advancement of
Science, 2007).

Second, information derived from automatic methods can help co-
ordinating the engagement of volunteers. This includes the prioritization
of areas guiding the assignment of analysts and the sequence in which
different areas are to be mapped. There is only little research about the

1 see http://www.standbytaskforce.org/(accessed 2017-07-17).
2 see http://www.giscorps.org (accessed 2017-07-17).
3 see http://www.tomnod.com/(accessed 2017-07-17).
4 see http://tasks.hotosm.org/about (accessed 2017-07-17).
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actual mapping sequence of volunteers in microtasking approaches
without additional guidance. Hu and Janowicz (2016) analyzed the
online mapping efforts by volunteers in the wake of three natural dis-
asters. They compared the sequence in which tiles of the area were
mapped to additional datasets representing potentially critical in-
formation within those tiles, namely population distribution and road
infrastructure. Their results indicate that the mapping sequence was not
strongly correlated with these additional datasets.

The following sections describe our approach to address the two
abovementioned aspects of reducing the areas of interest and prioritizing
important subsets in the context of conflict damage assessment (see
Fig. 1). This includes the automatic image analysis for delineating
settlement areas and detecting changes in these areas (see Section 2.1),
and the concept for deriving the priorities of image subsets (see Section
2.2) within the web application (see Section 2.3).

In contrast to the studies mentioned above, our approach does not
use any additional data to determine the location and priority of im-
portant subsets, but relies only on the analysis of the bi-temporal image
data. The overall goal of is to guide analysts to tiles where a lot of
destructed buildings are to be found.

2.1. Automatic settlement detection and change analysis

The algorithm automatically detecting destruction in the bi-tem-
poral images is a process of geographic object-based image analysis
(GEOBIA) and change detection. GEOBIA is specifically well suited for
the analysis task in our framework. The incorporation of features such
as shape, size or hierarchical relations in addition to spectral informa-
tion allows to selectively extract specific objects (in our case settlement
areas and destructed dwelling structures). In addition, the object-based
approach naturally integrates raster and vector-based analysis
(Blaschke et al., 2014), which facilitates the extraction of results in a
form that can easily be integrated into larger geospatial analysis
workflows (see Section 2.2).

In a first step, the images are searched for areas where settlement
structures exist. This is done on a coarse object level created by
chessboard segmentation with segments having an edge length of 25m.
The process performs an edge detection after Lee (1983) and detects
anthropogenic structures based on the texture (using grey-level co-oc-
currence matrix measures, see Haralick, Shanmugam, & Dinstein, 1973)
and the intensity of the edges per segment. In addition, the proximity of
possible settlement segments to each other and the size of resulting
settlement areas is taken into consideration.

In a second step, the areas identified as containing settlements are
segmented on a finer scale using a morphological closing operator and
subsequent multiresolution segmentation (Benz, Hofmann, Willhauck,
Lingenfelder, & Heynen, 2004) to delineate objects such as single
dwellings. Those objects are subject to the object-based change ana-
lysis. Changed structures are identified by their difference in change to

the corresponding settlement areas regarding spectral and structural
(edges) features. Target objects (i.e., dwelling structures) are then dis-
tinguished from similarly changed, but non-relevant objects (e.g., dis-
appeared fences) using features such as shape, size or topological re-
lations (for details on the algorithm, see Knoth & Pebesma, 2017).

The process returns two results, a shapefile of the settlement areas
determined in the first step (including a buffer), and a shapefile of the
destructed dwelling objects identified in the second step.

2.2. Microtasking and collaborative mapping

Both results of the abovementioned image analysis are used in the
framework for organizing and facilitating the collaborative mapping.
The settlement objects are used to define areas of interest whereas the
result of the destruction detection is the basis for the prioritization of
these areas.

Initially, the study area is divided into equally sized subsets that can
be investigated individually by volunteers. The areas should be small
enough to be quickly analyzed by single volunteers but large enough to
make a substantial contribution (Barrington et al., 2011). Since the
analysis tasks in our example are relatively complex and the target
settlements consist of large numbers of very small dwelling structures,
we chose a small subset size of 100m by 100m. Subsets (tiles) located
in areas that have been detected as containing settlement structures are
highlighted on the map. For organizing the collaborative mapping
tasks, users are provided with a list of important tiles in descending
order of priority. This priority is initially determined based on the
number of huts detected as disappeared by the algorithm. When tiles
are investigated by volunteers, the prioritization is updated accord-
ingly, i.e., the number of previous visitors influences the priority of a
tile. For example, areas with a higher number of possibly destructed
dwellings and with the number of manual investigations lower than a
certain threshold get higher priorities.

Through this dynamic prioritization, it is possible to guide volun-
teers according to different preferences and requirements of a specific
use case. If the main goal is to distribute volunteers among all possibly
affected areas, this threshold can be set to 1. In this case, each tile that
has been investigated by one volunteer will be given lower priority. If
the goal is to have the strongly affected areas mapped by several vo-
lunteers before proceeding to less affected tiles, a higher threshold can
be chosen. In this case, tiles with a large number of possibly destructed
dwellings will retain a high priority until they have been investigated
by a higher number of volunteers. Alternatively, other rules can be used
to assign priorities, e.g., the degree of disagreement between previous
investigations (variability of the results of different users).

2.3. Implementation as a web application

The described tool for manual conflict damage assessment is

Fig. 1. Conceptual framework to combine automatic and manual crowd-based image analysis.
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developed as a web application to lower the barriers for users to engage
in the collaborative mapping (Fechner, Wilhelm, & Kray, 2015; Morgan,
Gilbert, McDonald, & Zachry, 2014). The graphical user interface (GUI)
provides standard map interaction (zooming, panning, jump to full
extent) as well as functionality to switch between the pre- and post-
conflict images, to tag destructed dwellings, and to save edits (see
Fig. 2).

The main viewer shows the imagery, which is overlaid by a semi-
transparent layer showing the grid of tiles. Those tiles that are located
in settlement areas (see Section 2.1) are highlighted in blue. Tiles that
have been mapped before, are highlighted in green. Users can click on
any of the tiles to start mapping. The web-mapping application also
provides a voting system that allows to assess the uncertainty of results
and can be used to combine results of single volunteers based on con-
sensus. If a tile has been mapped before, users can vote on each object
previously identified as destructed dwelling to confirm or object the
decision.

In addition, the GUI shows a list of tiles containing dwelling struc-
tures that have been identified as destroyed by the automatic method.
These tiles are ordered in descending order of priority (see Section 2.2).
Each entry of the list includes the number of dwellings identified as
destructed, and the number of volunteers who have already examined
the corresponding tile. By clicking on an entry in the list, the current
view is directly zoomed to the corresponding tile. However, it is also
possible to zoom and pan freely.

Users with administrator rights (e.g., project leaders or initiators of
a mapping campaign) can download the resulting objects as GeoJSON
or as a shapefile. For all objects, the number of positive and negative
votes and the timestamps of edits are stored as attributes in the
downloaded file.

The web application was implemented in JavaScript and uses well
established web technology frameworks and libraries. On the server
side, the NodeJS runtime environment and the web application fra-
meworks ExpressJS and KeystoneJS are used whereas Pug is used for
rendering. The interactive map was realized using the JavaScript li-
brary Leaflet. The data is stored in the document-oriented database
MongoDB using the GeoJSON format, which is widely adopted in the
field of open-source geospatial web applications.

3. User experiment

3.1. Study area and data

The data for the user experiment consisted of two very high-re-
solution satellite images of the Negeha region in Darfur, Sudan. The
’post-conflict’ image was acquired by the WorldView-2 satellite in

December 2010, after a reported attack in the area. The ’pre-conflict’
image was acquired by the GeoEye-1 satellite and dates back to January
2010, which is before the alleged attack. Both images have a spatial
resolution of 0.5 m. The area covered is about 105 km2 and contains
several small villages spread over the whole territory. The villages show
different extents of destruction (see Fig. 6). Both images were visualized
as true color RGB composites for the collaborative mapping. The ima-
gery for our research was provided by the Geospatial Technologies and
Human Rights Project of the American Association for the Advance-
ment of Science. The automatic image analysis method was evaluated
by comparing its results to reference data collected by visual inspection.
This resulted in a user's accuracy of approximately 73% and a produ-
cer's accuracy of approximately 75% in this study area (for details on
the evaluation, see Knoth & Pebesma, 2017). Therefore, the total
amount of destructed dwellings that is used for the prioritization can be
expected to be slightly overestimated.

3.2. Experimental setup

In total, 30 volunteers participated in the user experiment. Eighteen
of them were male and 12 female. Their age ranged from 21 to 61
(mean 28.8, standard deviation 7.7). We did not make the experiment
openly available but conducted the study in a controlled test environ-
ment to minimize the influence of external factors such as technical
equipment or internet connectivity. Most of the participants were re-
cruited from students and staff of the Department of Geosciences of the
University of Münster. Seven participants stated to have previous ex-
perience in the visual analysis of remote sensing data. The main char-
acteristics of our test group of volunteers correspond quite well with the
patterns found by the Humanitarian OpenStreetMap Team (see Section
1.2) in their study (Humanitarian OpenStreetMap Team, 2017) on the
state of their volunteer community conducted in 2017: regarding age
structure, the largest group in this survey was formed by participants
between 25 and 34 years with just over 43% (about 47% in our study),
followed by the group between 18 and 24 years with about 20% (about
33% in our study) and the group between 35 and 44 years with about
19% (about 17% in our study). They also found an imbalance regarding
gender with about 69% male and 29% female respondents (60% male
and 40% female in our study). In addition, the report mentions a ten-
dency for members to come from GIS or technical backgrounds
(Humanitarian OpenStreetMap Team, 2017).

The main goal of the user experiment was to evaluate the possible
gain in efficiency of the mapping processes by providing the automatic
prioritization. The second goal was to qualitatively analyze the map-
ping sequence of volunteers in conflict damage assessment with and
without guidance by the priority list.

Fig. 2. Screenshot of the graphical user interface. It
shows the post-conflict image overlaid by tiles in
areas of interest (blue), previously investigated tiles
(green) and tags indicating destroyed dwelling
structures. The list on the right shows the priority
areas. Image © 2017 DigitalGlobe. (For interpreta-
tion of the references to color in this figure legend,
the reader is referred to the Web version of this ar-
ticle.)
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The experimental setup faces several challenges. The behavior and
efficiency of volunteers should be evaluated in a campaign scenario,
i.e., taking the possible influence of the results from other participants
into account. At the same time several independent repetitions of the
experiment need to be achieved in order to reduce the influence of
chance or unusual user behavior.

To reconcile these requirements, the participants were randomly
split into groups simulating small mapping campaigns. We created 10
campaigns with three participants working on each campaign. All
campaigns took place in the same study area described above. Five
campaigns were assigned to the scenario with and five to the scenario
without prioritization. The participants stating previous experience in
remote sensing (see above) were randomly distributed among the
groups. Three of them worked in the scenario with priority list and 4 in
the scenario without priority list.

All participants worked on the same machine for the experiment.
Before starting the actual mapping process, each participant received a
short instruction including example image subsets specifying the target
objects of the campaign (two examples are shown in Fig. 3). Afterwards
they were presented with the web application and given 2min time for
getting acquainted with the user interface outside the actual study area.
In the subsequent mapping phase, participants were asked to search for
destroyed dwellings for exactly 10min.

The first participant of each campaign started mapping an empty
project without any previously investigated tiles. The second and third
participants in each campaign started working in the same project with
the tiles mapped by previous volunteers of that campaign being visible.
For this experiment, we chose a prioritization scheme in which each tile
was removed from the priority list after being investigated by one
participant.

3.3. Evaluation

To evaluate the results of the user experiment, we first analyzed the
overall performance of the participants. We counted the number of
objects that were identified during the fixed amount of time (10min per
participant) for all users and grouped them depending on whether they
were guided by a priority list or not. We only counted correctly detected
objects, i.e., objects that we could confirm as having been destroyed.
We then applied statistical tests to evaluate whether performance dif-
ferences can be assumed to be non-random. Due to the small sample
size and potentially unequal variances we applied Welch's t-test on the
square root transformed number of correct detections, a nonparametric
Mann-Whitney-U-test, and a simple permutation test. To evaluate the
prioritization, the number of correct detections was also analyzed per
tile and in comparison to the automatically assigned priority. In addi-
tion to the overall performance, we compared the mapping behavior of
the participants with and without guidance in a qualitative analysis. We
examined the sequence in which the tiles were mapped by each parti-
cipant and how often the different parts of the study area were in-
vestigated throughout the two groups.

4. Results

4.1. Overall performance

Table 1 and Fig. 4 summarize the performance of participants with
and without prioritization.

In total, the participants mapping with guidance by the priority list
investigated 100 tiles while the participants without prioritization ex-
amined 128 tiles. The number of correctly mapped target objects, i.e.,
destructed or disappeared dwelling structures, was 812 for the parti-
cipants with and 476 for the participants without priority list. The mean

Fig. 3. Pre- and post-conflict images of two subsets of the study area showing typical examples of destroyed dwelling structures. Images © 2017 DigitalGlobe.
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number of correctly mapped target objects per participant was 54.1 for
the group with and 31.7 for the group without the priority list. Thus,
the prioritization resulted in a gain of 70.7% in the mean number of
correctly identified target objects.

Because of the more extreme upward outliers in the unguided user
group (see Fig. 4), the difference is even bigger when comparing the
medians (49 with and 25 without prioritization). Accordingly, the
variability in performance was higher for the participants without
priority list (standard deviation of 26.6) than for the group with
prioritization (standard deviation of 19.6).

For the participants with priority list, the average number of

identified target objects per user decreased with the position of that
user within the order of the corresponding campaign. The users who
came first in the order of their campaign detected on average 62.2
objects, the users who came second detected 52.6, and the users who
came third detected 47.6 objects. No such trend was observed for the
participants without priority list (first: 31.2, second: 43.2, third: 20.8).

Despite the limited sample size ( =n 15 for both groups), the applied
statistical tests suggest significant differences between the overall
mapping performance of the groups. The one-sided two sample Welch's
t-test on the square root transformed number of correct detections re-
jects the hypothesis that the performance of users without prioritization
is greater than or equal to the performance of users with prioritization
at =p 0.0027. The non-parametric Mann-Whitney-U-test yields

=p 0.0013. Both results support the finding that the distributions differ
significantly, without assuming equal standard deviations. We fur-
thermore drew 100000 random permutations by reassigning observa-
tions to the groups and derived empirical mean and median differences
to compare with the original grouping. As a result, only 0.45% of the
empirical median and 1.33% of the empirical mean values had larger
absolute group differences than the original grouping, further sup-
porting our finding.

4.2. Mapping sequence

The qualitative analysis of the results of our study revealed certain
patterns regarding the mapping sequence of the volunteers. For the
participants with prioritization, two different strategies became ap-
parent. Some participants followed the priority list very closely, always
mapping tiles that at this point had high priorities. Those participants
examined several different settlement areas distributed among the
study area. Most participants, however, used the priority list mainly to

Table 1
Basic summary statistics of the user experiment results for groups with and without prioritization.

Priority list Number of correctly detected destructions per user Total number of investigated tiles

Min Median Mean Max Stdev Sum

No 2 25 31.73 103 26.61 476 128
Yes 25 49 54.13 103 19.58 812 100

Fig. 4. Summary of the number of correctly detected destructions for groups
with and without prioritization guidance.

Fig. 5. Overview of the mapping sequence of parti-
cipants in one group of the user study (mapping with
priority list), overlaid on a semi-transparent image of
the study area for orientation. Tiles mapped by the
first participant in the group are shown in red, tiles
mapped by the second and third participant are
shown in yellow and green, respectively. Background
Image © 2017 DigitalGlobe. (For interpretation of the
references to color in this figure legend, the reader is
referred to the Web version of this article.)
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zoom to a highly affected area. After finishing the first tile, they con-
tinued to map the destruction in one or more neighboring tiles of the
same settlement before continuing with the next tile on the priority list.

Fig. 5 shows the usage pattern of a group with priority list, which
exemplifies the different strategies. Here, the second participant of that
campaign strictly followed the prioritization and thus changed the lo-
cation several times. The third participant continued to investigate the
neighborhood of the tile that was first suggested by the prioritization
before proceeding to the next tile in the priority list. The first partici-
pant of that campaign remained in the village containing the first tile on
the priority list for the whole mapping time.

The participants without priority list, as expected, tended to remain
longer in a specific village with none of them changing the settlement
area more than once during their mapping task. On average, the par-
ticipants with priority list visited ≈ 2.5 different settlements while those
without priority list worked in ≈ 1.4 different villages.

Regarding the locations and spatial distribution of investigated tiles,
the overall pattern of the participants with priority list, as expected, is
strongly steered by the prioritization. For the participants without
priority list, no clear pattern is visible when comparing the five cam-
paigns. Fig. 6 depicts the number of investigations per tile, aggregated
over all participants with and without priority list. It shows that the
investigations by participants without priority list were more evenly
distributed than those of the group with prioritization. Only a slight
concentration of investigations can be observed in villages located in
the north-western part of the study area (see Fig. 6). The participants

with priority list concentrated more on specific tiles. These tiles in turn,
where distributed over different locations within the study area.

The spatial distribution of investigated tiles also reveals that in the
group of users without prioritization, more attention was paid on set-
tlements showing a relatively low degree of destruction (see Fig. 6,
Example a). At the same time, two villages with a relatively large
amount of destruction were given little to no attention (see, Fig. 6,
Example b).

In addition, we found the upward outliers in the group without
prioritization, i.e. the participants who had identified a lot more target
objects than the rest of that group, to be those participants who had
mapped in an area with many high priority tiles. Overall, there is a
strong correlation between the automatically assigned priority of tiles
and the number of correctly identified target objects in these tiles for all
participants (see Fig. 7).

5. Discussion

The results of our study indicate that the proposed approach can
increase the efficiency of manual conflict damage assessment. The
prioritization successfully guided the participants to areas with high
degrees of conflict damage. The number of target objects correctly
identified was considerably higher for the group with than for the group
without the prioritization. Although the sample size is relatively small
and the variance especially in the group without prioritization is large,
the tests conducted in Section 4.1 suggest the difference to be

Fig. 6. Comparison of the number of investigations per tile for the participants without (upper left) and with (lower left) priority list. The example subsets a) and b)
show pre- and post-conflict villages with low (upper right) and high (lower right) degree of destruction. Images © 2017 DigitalGlobe.
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significant. In addition, there is a strong correlation between the au-
tomatically assigned priority of tiles and the number of correctly
identified target objects in those tiles.

Our interpretation of the overall performance is backed by the
qualitative analysis of the mapping approaches of the participants. It
indicates that the mapping strategies can be improved by guidance
through automatic prioritization because users in the group without
priority list spent more time examining settlement areas with only little
conflict impact.

Since our study focused on the performance of volunteers in terms
of how many objects they correctly identified in a fixed amount of time,
we did not systematically compare the accuracies of the participants
with and without prioritization. The producer's accuracy cannot be
inferred from our results because the participants were not strictly in-
structed to conduct an exhaustive search in each tile before proceeding
to another one. In addition, reference data on all destroyed target ob-
jects in all investigated subsets would be necessary to assess the number
of false negatives. The user's accuracy for each participant can be in-
ferred from the proportion of those user-detected targets that we could
confirm as being correctly tagged. Here, the average accuracy was
93.96% (standard deviation 5.62%) for the participants with prior-
itization and 78.98% (standard deviation 19.23%) for the participants
without prioritization. The differences can, in part, be explained by the
participants with prioritization being guided to subsets that often
showed not only a higher numbers of destructions but also more ob-
vious changes (e.g. parts of villages that were completely destroyed).
This may have reduced the risk of mistaken interpretations by those
participants.

Regarding the method of prioritization, different strategies could be
used depending on the specific goal of a mapping campaign (e.g.,
aiming for coverage of large areas or for a high number of repeated
investigations of tiles, see Section 2.2). In large organizations em-
ploying manual image analysis, these strategies can be used to organize
analysis tasks more efficiently. In our user study, we aimed at tiles
being mapped only once per campaign. This was done to focus on the
influence of the prioritization on the spatial distribution of investigated
tiles, and to achieve comparable results for the groups with and without
priority list. This means that the effect of the voting system and dif-
ferent strategies for the prioritization could not be evaluated.

In addition, it might be favorable to change the spatial entity to base
the prioritization on. In our user study, the prioritization was based on
the number of possibly destructed dwellings per tile. Section 4.2 has
shown that users who closely follow this prioritization, often switch

between different settlement areas. In some cases, it might be desirable
to investigate highly affected settlements as a whole (including possibly
less affected tiles) in order to grasp the full situation in those settle-
ments before proceeding to another area. Our approach could accom-
modate this strategy. As mentioned in Section 2.1, the automatic image
analysis detects coherent settlement areas, which can be delivered as
polygon shapefiles. Therefore, it is possible to assign the same priority
to all tiles within a specific settlement with regard to the degree of
destruction throughout the whole settlement.

For the automatic change analysis, a method yielding probabilities
of change instead of a crisp change vs. no-change distinction could be
used. These probability values could be included in the prioritization of
image tiles instead of or in addition to the number of changed objects.
Depending on the focus of a monitoring campaign and the number of
available analysts, it might also be favorable to increase the sensitivity
of the automatic change detection method. In this study, the producer's
and user's accuracy of the applied algorithm were well balanced, i.e.,
the total number of destroyed buildings was not highly over- or un-
derestimated. The algorithm's sensitivity to change could be increased
in order to achieve a higher producer's accuracy while in turn allowing
for more false change alerts. As a result, more subsets of the images
would be recommended for manual image analysis, increasing the
manual workload but decreasing the risk of missing areas of destruc-
tion.

With regard to monitoring cultural heritage during conflicts, the
potential gain in efficiency depends on the task at hand. When a specific
heritage site under threat is known in advance and the area under in-
vestigation is of limited size, the direct manual monitoring without
prior automatic analysis is probably more efficient. However, there are
applications where a screening of larger spaces or continuous ob-
servations over longer periods are necessary. One example is the in-
tensified looting of archaeological sites in Egypt in the wake of the Arab
Spring in 2011. Parcak, Gathings, Childs, Mumford, & Cline, 2016
identified the remote investigation, potentially including crowdsour-
cing, to be a promising tool for monitoring cultural heritage loss in this
context. Here, the combination of automatic and manual image analysis
could make a significant contribution towards reducing workload and
time consumption of the investigations.

An important open question that should be addressed in future re-
search is how the gain in efficiency and the effort needed for the au-
tomatic image analysis scale up with larger monitoring areas. In a small
study area, the gain in efficiency is probably outweighed by the effort
needed to apply the automatic image analysis and the corresponding
processing. However, if a similar approach can be deployed on a large
study region with only little user input required for the automatic
processing, we expect the overall possible gain in efficiency to be
considerable. Especially when larger areas at risk need to mapped over
longer periods, an automatic method alerting human analysts and
guiding them to affected areas could be of great use.

To promote the application of the presented approach in practical
conflict analysis, further developments facilitating the reuse and prac-
tical adoption of GEOBIA are needed. Currently, the majority of object-
based approaches (including the change detection method used for this
study) rely on proprietary software, which may hamper their practical
adoption. However, first steps to create open, reproducible and easily
applicable GEOBIA workflows based on open-source software and
containerization technology have shown promising results (Knoth &
Nüst, 2017). Another important issue is the transferability of the au-
tomatic change detection method. The algorithm applied in this study
was developed to be robust against changes in image and sensor
properties, but aims at changes of objects of a certain shape, size and
spatial configuration. To detect changed objects that strongly differ
from those targets, the method would need to be adapted (Knoth &
Pebesma, 2017). However, GEOBIA has significant potential in this
context because considerable progress towards transferability has been
made in this field, e.g., through automatic determination of

Fig. 7. Comparison of correct user-detected destructions in a tile and the tile's
rank according to the automatic image analysis (with higher numbers in-
dicating higher ranks, i.e., higher priorities). Tiles with the same number of
automatically detected destructions are given the same rank. The corresponding
rank correlation is 0.863.
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segmentation and classification parameters, and fuzzy classification
workflows (Drǎguţ, Csillik, Eisank, & Tiede, 2014; Martha, Kerle, & van
Westen, 2011; Hofmann, 2016).

6. Conclusions

We showed that combining automatic with manual image analysis
improves the efficiency of conflict damage assessment in remote sen-
sing images. The integration of results from automatic methods allows
different strategies for coordinating analysis tasks within potentially
large groups of volunteers. However, more research is needed to in-
vestigate the possible gain in efficiency in analyses on larger geo-
graphical scales, and to address the possible effect of different prior-
itization strategies on the efficient coordination of large numbers of
analysts.

The proposed approach is also applicable for smaller teams of
trained experts. This can be important in conflict monitoring because of
the specifically high requirements regarding reliability in such a poli-
tically precarious field and the important role of expert testimonies.
Here, the improvement of efficiency can have an even greater impact
because of the more limited analyst resources available.
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