On generating spatio-temporal data

Edzer Pebesma, Simon Scheider, Ben Gräler, Christoph Stasch

ifgi Institute for Geoinformatics University of Münster

Wageningen UR, Sep 30, 2015

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

International Journal of Geographical Information Science Vol. 00, No. 00, Month 2009, 1–33

Article under review

(日) (部) (E) (E) (E)

Research article

A generative algebra for spatio-temporal information

Simon Scheider^{a*}, Benedikt Gräler^b, Christoph Stasch^{b,c}, and Edzer Pebesma^b

^aInstitut für Kartographie und Geoinformation, ETH Zürich, Switzerland; ^bInstitut für Geoinformatik, Universität Münster, Germany; ^c52[°]North GmbH

(September 2015)

Maintaining knowledge about the provenance of data, i.e., about how it was obtained, is crucial for its further use. Contrary to what the overused metaphors of "data mining" and "big data" are implying, it is hardly possible to use

Overview

- 1. Discovery
- 2. Provenance
- 3. What is data?
- 4. Basic types
- 5. Data generation procedures
- 6. Derivation operations
- 7. Examples: derivation graphs

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- 8. Potential, further work
- 9. Conclusions

How do you discover data?

How do you discover data? Why is discovery important?

How do you discover data? Why is discovery important? Impact.

Provenance

PROV-O¹: "Provenance is information about entities, activities, and people involved in producing a piece of data or thing, which can be used to form assessments about its quality, reliability or trustworthiness.

Provenance

PROV-O¹: "Provenance is information about entities, activities, and people involved in producing a piece of data or thing, which can be used to form assessments about its quality, reliability or trustworthiness.

The PROV Family of Documents defines a model, corresponding serializations and other supporting definitions to enable the inter-operable interchange of provenance information in heterogeneous environments such as the Web. This document provides an overview this family of documents."

¹http://www.w3.org/TR/2012/WD-prov-overview-201⊉1211// (=) = ∽०० ()

"data are not just numbers, they are numbers with a $\mbox{context}^{2\mbox{"}}$

²George W. Cobb and David S. Moore. "Mathematics, statistics, and teaching." American Mathematical Monthly (1997): $801-823 \rightarrow 2$

"data are not just numbers, they are numbers with a ${\rm context}^{2"}$ To give context, to numbers, we need

- reference systems: SI, units of measurement, datums, calenders, identifiers
- coherence: when/where/what (meaning)
- maybe also: who/why/how (intention)

²George W. Cobb and David S. Moore. "Mathematics, statistics, and teaching." American Mathematical Monthly (1997): 801-823. $\bullet \in \mathbb{R}$ $\bullet \in \mathbb{R}$

Basic types

Basic reference system types and simple derivations thereof. Each type needs to go along with its reference system (RS). \mathcal{P} denotes the power set (set of all subsets).

	(,	
Symbol	Definition	Meaning	Description
S		\mathbb{R}^3	Set of possible spatial locations with RS.
Т		\mathbb{R}	Set of possible moments in time with RS.
D		\mathbb{N}	Set of possible discrete entity identifier with RS.
Q		\mathbb{R}	Set of possible observed values with RS.
R	S set	$\mathcal{P}(S)$	Set of regions: bounded by polygons, or col-
			lection of isolated locations and combinations
			thereof.
1	T set	$\mathcal{P}(T)$	Set of collections of moments in time: contin-
			uous intervals or a set of moments in time or
			combinations thereof.
D set	D set	$\mathcal{P}(D)$	Sets of object identifiers
Q set	Q set	$\mathcal{P}(Q)$	Sets of quality values.
bool		$\{T,F\}$	Boolean, also used to express predicates for se-
			lection
Extent	R imes I	R imes I	set of spatio-temporal extent as the orthogonal
			product of the spatial and temporal projections
Occurs	$(S \times T)$ set	$\mathcal{P}(S \times T)$	set of spatio-temporal subsets, occurrences of
	. ,	. ,	events and objects, but also of certain values or
			conditions in a field; footprint, support
	1		

Transitions

Symbol	Type definition	Description		
Select	Extent $\Rightarrow S \times T$	select the centroid (or alike) of an extent		
SSelect	$R \Rightarrow S$	select the centroid of a region		
TSelect	$I \Rightarrow T$	select the centroid of a time interval		
Tessel	$S \times T \Rightarrow \text{Extent}$	map spatio-temporal locations to their ¿corresponding		
		spatio-temporal extent		
STessel	$S \Rightarrow R$	map spatial locations to regions		
TTessel	$T \Rightarrow I$	map time stamps to time intervals		
QPartition	$Q \Rightarrow Q$ set	map quality values to ranges of qualities		
Qstat	$(Q \Rightarrow \text{bool}) \Rightarrow Q$	summarize quality values (e.g., mean, median)		

Generation procedures: Fields

Symbol	Type definition	Description
Field	$S \times T \Rightarrow Q$	spatio-temporal field
SField	$S \Rightarrow Q$	spatial field
TField	$T \Rightarrow Q$	temporal field (time series)

<□ > < @ > < E > < E > E のQ @

Generation procedures: Lattices

Symbol	Type definition	Description
Lattice	$R \Rightarrow I \Rightarrow Q$	spatio-temporal lattice
LatticeS	$R \Rightarrow T \Rightarrow Q$	temporal spatial lattice
LatticeT	$S \Rightarrow I \Rightarrow Q$	spatial temporal lattice
SLattice	$R \Rightarrow Q$	spatial lattice
TLattice	$I \Rightarrow Q$	temporal lattice

Generation procedures: Events

Symbol	Type definition	Description	
Event	$D \Rightarrow S \times T$	spatio-temporal events	
RegionalEvent	$D \Rightarrow R \times T$	events affecting a set of locations	
IntervalEvent	$D \Rightarrow S \times I$	events lasting for some time interval	
BlockEvent	$D \Rightarrow \text{Extent}$	events affecting a set of locations and lasting for	
		some time interval	
SEvents	$D \Rightarrow S$	events' locations	
TEvents	$D \Rightarrow T$	events' timestamps	
MarkedEvent	$D \Rightarrow S \times T \times Q$	spatio-temporal marked events	

Generation procedures: Trajectories

Symbol	Type definition	Description
Trajectory	$T \Rightarrow S$	trajectory
RegionalTrajectory	$T \Rightarrow R$	trajectory of regions
IntervalTrajectory	$I \Rightarrow S$	trajectory over temporal intervals
BlockTrajectory	$I \Rightarrow R$	trajectory over temporal intervals of regions
MarkedTrajectory	$T \Rightarrow S \times Q$	marked trajectory

Generation procedures: Objects

Symbol	Definition	Description
Objects	$D \Rightarrow T \Rightarrow S$	objects in time and space
RegionalObjects	$D \Rightarrow T \Rightarrow R$	objects in space and time defined over regions
IntervalObjects	$D \Rightarrow I \Rightarrow S$	objects in time and space defined for collections
		of moments in time
BlockObjects	$D \Rightarrow I \Rightarrow R$	objects in space and time defined over regions
		and collections of moments in time
OjectTimeSeries	$D \Rightarrow T \Rightarrow Q$	time series associated with each object
MarkedObjects	$D \Rightarrow T \Rightarrow S \times Q$	marked object trajectories

Data derivation

Data derivation: generating field data

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Data derivation: spatial/temporal aggregation

see paper for definitions of curry, aggl, aggT and settop

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Data derivation: deriving objects from fields

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

1•	2•		

1•	2•		

Three simplest cases:

point	cell is point	cell is constant	cell is aggregation
1	NA	cell value	NA
2	cell value	cell value	NA

Three simplest cases:

point	cell is point	cell is constant	cell is aggregation
1	NA	cell value	NA
2	cell value	cell value	NA

how can software decide what to do?

Potential, further work

Discovery:

- ▶ the theory³ works, but does it solve problems in practice?
- translate the abstract syntax of our algebra into tools
- annotate data sets with derivation graphs
- publish data with derivation graphs
- develop discovery mechanisms (linked data, annotation tools)

³http:

//www.geographicknowledge.de/vocab/AlgebraReferenceSystems.thy 🛓 🗠 actions and the set of the set

Potential, further work

Discovery:

- ▶ the theory³ works, but does it solve problems in practice?
- translate the abstract syntax of our algebra into tools
- annotate data sets with derivation graphs
- publish data with derivation graphs
- develop discovery mechanisms (linked data, annotation tools)
- Generation:
 - reason about space of possible derivations
 - reason about compatibility
 - develop recommender systems

³http:

//www.geographicknowledge.de/vocab/AlgebraReferenceSystems.thy = 🔊 a 🔿

Conclusions

- We propose a generative algebra for spatio-temporal information that describes how data is generated in a variety of derivation processes, expressed as derivation graphs.
- Data generation procedures are expressed as functions on basic types S, T, D, Q
- Possible derivations can be expressed as chains of function applications, where each function is either an operation of the algebra or a spatio-temporal data generation procedure.
- Types of data generation include tesselations, fields, coverages, lattices, events, objects, trajectories.
- ▶ We illustrate how they can be converted into each other.
- Our algebra can be used for publishing provenance of data sets in terms of a derivation graph and on a level of detail that distinguishes types of spatio-temporal information.
- Our algebra makes explicit the support of data, i.e. whether values refer to aggregated values or constant values over regions or time periods.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで