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Interactive visualization of uncertain spatial and spatio-temporal data
under different scenarios: an air quality example
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This paper introduces a method for visually exploring spatio-temporal data or
predictions that come as probability density functions, e.g. output of statistical
models or Monte Carlo simulations, under different scenarios. For a given
moment in time, we can explore the probability dimension by looking at maps
with cumulative or exceedance probability while varying the attribute level that is
exceeded, or by looking at maps with quantiles while varying the probability
value. Scenario comparison is done by arranging the maps in a lattice with each
panel reacting identically to legend modification, zooming, panning, or map
querying. The method is illustrated by comparing different modelling scenarios
for yearly NO, levels in 2001 across the European Union.

Keywords: Dynamic graphics; Maps; Probability density function; Cumulative
density function; Environmental modelling

1. Introduction

Spatio-temporal data, attributes that vary over space and time, may be measured, as
for example with air quality monitoring network data, or they may be modelled, i.e.
be estimated or predicted by a model. Except for small measurement error,
measured data usually have no uncertainty associated with them. In the case where
the data result from a model however, the associated uncertainties may be
considerable. Possible sources for the uncertainties may be that spatial or temporal
interpolation or extrapolation took place, or that a physical, chemical or otherwise
mechanistic model was used to model the attribute for unmeasured locations and/or
moments in time where initial conditions, boundary conditions, model parameters
and/or model structure were subject to uncertainty (e.g. Heuvelink 1998).

In many applications the results of a modelling study are presented as maps with
predicted or estimated values. There may be some report that uncertainties were
known, were quantified, and there may even be a map with associated standard
errors for the predicted value. The information available is however often a full
probability distribution for the attribute under study for each spatial location and
moment in time. This distribution may be arrived at using assumptions of some
parametric distribution, like the normal or Gaussian distribution, or may be based
on a set of simulated spatio-temporal fields resulting from a Monte Carlo
experiment. Because this (approximation of the) spatio-temporal probability
distribution is a function (curve) the full information we have for each point in
space/time and for any possible single map view is necessarily reduced. The need to
deal with uncertainties becomes more urgent when we model them or want to
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compare them for different scenarios. These scenarios may refer to the model
structure used, or e.g. to different boundary conditions for models forecasting future
developments of an attribute. When two scenarios come up with different
predictions, the immediate question is whether the difference can be attributed to
chance, resulting from uncertainty in one or both of the scenarios, or to really
opposing outcomes. Comparing prediction intervals instead of predicted values
(Pebesma and De Kwaadsteniet 1997) is in this context already a step forward, and
is simply obtained by classifying the probability distributions.

In this paper we present a simple method to communicate the full spatio-temporal
probability distribution under different scenarios to end-users, without needing to
reduce information. We implemented this method, and have provided examples of
the method.

The organization of the paper is as follows: we will first introduce the data used
for the example; next we will explore the ideas implemented, and show a number of
resulting maps and graphs. We conclude with a discussion.

To illustrate the visualization procedure, we use data from a study where different
interpolation strategies for air quality variables across the European Union were
applied and compared. Here, this interpolation study serves only the purpose of
showing how we can end up with spatial probability distributions, and how we can
explore them visually. This paper does not intend to defend either of the modelling
strategies made there, nor does it provide all detailed modelling choices made. The
point of this paper is to use its results to illustrate our visualization approach. We
first briefly explain the modelling approach used.

2. Spatio-temporal probability distributions: an example
2.1 Air quality data

The example data used are European air quality data used from Airbase (http://
airbase.cionet.cu.int). We chose the variable NO,, and used annual averages from
hourly recorded measurements, for 2001. We selected stations where at least 75% of
the hourly measurements were valid. Figure 1 shows a map of Europe with the
selected monitoring network stations.

We will use three different approaches, or scenarios, to interpolate annual average
NO, levels, which differ with respect to the site type and to the external covariate
information used. First we will explain the general method used for all three, and
how they lead to predictive probability density functions.

2.2 Interpolating air quality

Three different modelling (interpolation) scenarios are used to predict NO,
concentration on a 1kmx 1km grid for Europe; all three use universal kriging
(sometimes called kriging with external drift or regression kriging) for interpolation
(Chilés and Delfiner 1999).

In the universal kriging model the annual average NO, concentration on the log-
scale, Z(s;), at location s; is modelled as the sum of a meaningful trend and a random
residual:

p

Z(s)=>_ X;(s)B;+e(s;). i=1,....n (1)

j=0
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Figure 1. Selected NO, monitoring stations from Airbase, used for the spatial modelling.

with X(s;) known and relevant predictors (covariates) at location s; (i.e. no simple
functions of coordinates, but layers in the GIS data base), with Xy(s)=1 to allow for
an intercept fo, and e(s) an intrinsically stationary random function with zero
expectation and known variogram (Chilés and Delfiner 1999). Residual variograms
were modelled isotropically, by substituting ordinary least squares residuals for the
true residuals.

Predictors were chosen from a large set of available predictors using a
forward stepwise procedure where candidate predictors entered the model
only when (i) they added at least 1% to the adjusted R* and (ii) the sign of
the regression coefficient agreed with the expected sign at the moment of
inclusion.
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2.3 From prediction and prediction error to cumulative density functions

We define the predictive cumulative probability density function (CDF) for scenario
k and location sy as a function of concentration level ¢ as

Py (c, so) =Prob(Z(so) <c), (2)

where Prob(x) refers to probability of event x, and with sy an arbitrary location on
the spatial prediction grid. On locations where we measured Z,(s;), we can say that
Pi(c, s;) is either O or 1, as the measurement is below or above ¢, when measurement
error is absent and ¢ different from Z(s;). We are however concerned with
predictions on a regular grid where we did not measure Z, and for these cases,
depending on an interpolation approach (scenario) k, we can obtain a continuous
probability Pi(c, so) as follows.

If we are willing to assume that prediction errors for NO, on the log-scale are, for
all three modelling scenarios, normally distributed, we can obtain the values for (2)
from the cumulative density function of the standard normal distribution ®, by
Py (c, 50) =(I>(<C—Zk(so))/ak(so)), with Z, (s,) and oy (s,) the predicted
value and prediction standard error at location s, respectively, for scenario k.
Function @ is tabulated in basic statistics text books, present in hand calculators; the
pnorm function in the R statistical program (Ihaka and Gentleman 1996) can also
be used. Next, we can back-transform this distribution from the log-scale to the
observation scale by taking the exponent of ¢ in P (c, s).

For spatio-temporal problems, Z;(sg) generalizes to Z;(sy, to) and the CDF
becomes P (c, so, o).

2.4 The three interpolation scenarios

The three modelling approaches (or scenarios) differ with respect to the regressors
included, the residual variogram model, and the spatial extent (or scale) of the
effects, or covariates included. The modelling scenarios for NO, concentrations are:

(1) global scale—at this scale global, background NO, concentration was
modelled based on globally varying variables not influenced by human
action. On the global scale for NO, the predictors selected were:

® square root of altitude,

® one climate factor (obtained from a factor analysis of a large number of
climate variables),

® square root of distance from the sea.

For the modelling and prediction, background monitoring stations were
selected.

(2) rural scale—the rural scale extends the global scale, tuning it to local and
human influence variables. The observations used are identical to the global
scale, but apart from the global scale predictors, for the rural scale the
following predictors were additionally selected:

® square root of difference in altitude between the central grid square and
the mean of the 24 surrounding grid squares in a 5x 5 window on a
1 km x 1 km grid,

® amount of high density residential area in a 5km x 5km window,

® amount of minor roads in a 5km x 5km window,
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® amount of major roads in a 5km x 5km window,
® the fraction of non-residential urban land in a 21 km x 21 km window.

Major and minor roads were derived (reclassified) from relatively low
resolution data on roads across the EU. These data were acquired from
AND Ltd (http://www.and.com). Non-residential urban land was derived
from the CORINE Land Cover 1990 map. Land cover data for 2000 was
released in 2005, too late to be incorporated in this study. Window averages
were calculated using approximately circular windows.

(3) wurban scale—for a set of distinct measurements, directly influenced by urban

activity, a regression model was made for (on the log-scale) residuals from
the global model. This regression model selected the following variables:

® high density residential area in the 1 km x 1 km grid cell of the monitoring
network station,

® major roads in the 1kmx1km grid cell of the monitoring network
station,

® minor roads in the 1kmx1km grid cell of the monitoring network
station.

For prediction, the urban scale residual predictions were added to the global
scale predictions to get a prediction on the log-scale. The same was done for
the prediction variances.

On the log-scale, we assumed a normal distribution of the prediction errors.
Figure 2(a) gives an example of a single cumulative probability density function
obtained for the NO, data set at a specific location. From such a curve we can read:

cumulative probability

(a)

the median, which is the concentration value where this curve reaches
cumulative probability value 0.5;

the degree of uncertainty: the flatter the curve, the more uncertain, the steeper
the curve the less uncertainty the data have; certainty about the concentration
value would result in a step from 0 to 1 at that particular value;
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Figure 2. (a) cumulative probability plot for a given location sy and given scenario; values
are obtained by assuming a normal distribution on the log-scale, and are drawn from P values
ranging from 0.01 to 0.99; (b) deriving cumulative probability P from a discretized
representation of the CDF, using linear interpolation.
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® quantiles, by choosing a cumulative probability value (y) and reading the
corresponding NO, concentration (x);

® cumulative probability, by choosing an NO, value (x) and reading the
corresponding probability value (y).

3. Dimensions

We want to explore the spatio-temporal CDF Pi(c, s;, ¢;). In our case space spans
two dimensions (s;=(x;, y;)), so the total number of dimensions spanned is six: {P, k,
¢, x, y, t}. Their characteristics are:

® space, s;: either two- or three-dimensional Euclidean space, or possibly latitude/
longitude locations on a sphere; space may be regularly discretized (gridded) or
irregularly discretized (vector). Our implementation deals with regular grids;

® time, #;: although we consider a non-temporal process in the example, the
attribute Z may be modelled as varying over space and time: Z(s;, ¢;) then has
as CDF Pi(c, s;, t;); time may be regularly or irregularly discretized;

® scenario, k: inevitably scenario is a discrete entity that may or may not have
some natural order;

® attribute level ¢ (concentration in our example); a continuous variable that may
be discretized in some way, but we will approach it slightly differently;

® cumulative probability, P: a continuous variable ranging from 0 to 1.

4. Visualization

We will be looking at maps that plot an attribute as a function of 2D space. An
obvious visualization of 3D space is to look at subsequent 2D slices through a 3D
body. Time can also be examined by showing an animation of 2D maps (or slices).

The actual function we want to visualize is that of P as a function of ¢, and ¢ as a
function of P. We do this by making maps of either P(c, s, ¢;) and modifying ¢
dynamically (follow the arrow in figure2(b)), or by making maps of c¢(P, s,
lj):P_l(c, s, t)), the quantile function which inverts the cumulative probability
function (revert the arrow direction in figure 2(b)).

4.1 Scenarios

We define scenarios as discrete, different entities, e.g. resulting from different
modelling approaches and/or levels of information availability. A scenario can be
identified with a short, descriptive string.

Building on the ideas from Cleveland (1993), implemented in the trellis library of
S-Plus and the lattice package in R, we compare maps corresponding to different
scenarios by (i) avoiding duplication where possible (e.g. of axes, legends) to
optimally dedicate space to graphing data, (ii) make everything the same for each
scenario except the attribute variability shown; this includes legend classes, legend
class colour, plotting area, and (iii) give for each scenario an identical response to a
query (zoom, pan, identify) on a single map.

4.2 Space—time

Although our approach is not limited to gridded data, the implementation of our
method uses a regular discretization in space (i.e. gridded data in space). The
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discretization chosen for time is regular but less rigid: the available time points do
not have to be equidistant, but their distance should be a multiple of a basic
time step. This allows for variability in time step, allowing periods with little
variability to be stored with little loss of space, while still allowing for a simple,
discrete index.

4.3 Probability

For each scenario k and each space-time point (s;, ¢;) we have a cumulative density
function P(c, ). One way would be to discretize ¢ and to store the P values
associated with each attribute (concentration) level. When (part of) the cumulative
density functions are rather steep, i.e. the P values increase fast between two values
of ¢ that are close together, we would need a large number of ¢ values to characterize
the full CDF for each space-time point. The alternative, which we used, is to
discretize P, and store the corresponding ¢ values for each space-time point. We can
then approximate P for each ¢ by (linearly) interpolating ¢ between the two
corresponding P values (figure 2(b)).

To characterize a cumulative probability density function we also used a semi-
regular discretization: probability steps do not have to be equidistant but their
distance should be a multiple of a basic probability step. We used for example the
nine cumulative probabilities 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95 and 0.99 in our
example, resulting in a basic probability step of 0.01 without needing the full 99
maps for each moment in time, that would have been needed if discretization of P
would have been regular.

4.4 Filling the scenario slots differently

Of course, it is not necessary for the scenario slot to contain scenarios. If we consider
a single scenario, it can be used to compare future projections for different time
steps, e.g. for 2010, 2015, 2020 and 2030, in order to compare their uncertainties.

5. Cross-sections: map views, graphs and interactive analysis

Recalling (2), which says that the spatial cumulative density function is a function of
location s; and attribute level ¢

Py (c, s;) =Prob(Zy(s;) <c),
the user can for a moment in time generate map views for:

® a quantile: given a level p, the maps show at each location the value ¢ for which
Pi(c, s;)=p (example: figure 3);

® the probability being below/above a threshold: given a level ¢, the maps show
for each location the cumulative density function Py(c, s;) (example: figure 4);

® the classified probabilities, expressed as (1—a)-prediction intervals relative to
an attribute level c—see table 1.
An example of classified probabilities, for (approximate) 90% prediction
intervals (¢=0.1) is shown in figure 5.

Further, for a given location 5; and moment in time #; we can give the graph of the
k curves of P as a function of ¢ (lower-right quadrant of figures 3, 4 and 5), in which
the curves should have been labelled or drawn in colour to identify the scenario, k.
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Figure 3. Map view for three scenarios showing the 0.5 quantile (median) of the NO,
predictive probability distribution, along with a graph of the three cumulative probability
functions under the map cursor (cross) and the probability cursor (horizontal line), adjustable
for the quantile probability level.

We can now vary interactively:

® the map cursor by clicking/dragging over the map; the value under cursor
changes in the cursor widget (not shown) and the graph of P as a function of ¢
changes, as s; changes;

® the area shown by zooming or dragging (panning) in one of the map views;
zooming and panning affects all scenarios k;
the time cursor by moving the time pointer in the time panel (not shown);

® the cumulative probability (P) level between 0 and 1, by moving (click + drag)
the horizontal line in the CDF plot of figure 3;
toggle whether we want to modify either the P level or the ¢ level;

® the level cursor (i.e. level ¢) for which we want to show exceedance
probabilities by moving (click +drag) the vertical line in the CDF plot of
figures 4 and 5;
the confidence level of confidence intervals by modifying 1—a (default 0.95);

¢ the legend minimum, maximum, number of legend classes and colour ramp.
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Figure 4. Map view for three scenarios showing probability of the true value of NO, being
below 20 ppm, along with a graph of the three cumulative probability functions under the
map cursor and the level cursor (vertical line), adjustable for the attribute (concentration)
level below which we want probabilities. Note that the legend header should have been
‘cumulative probability’ instead of ‘no2’.

6. Discussion

The method and tool presented here allows the interactive exploration of marginal
cumulative probability density functions for each space-time point of a regularly
discretized spatio-temporal random field. Thereby, it ignores spatial and/or
temporal correlation among these functions. The method combines (i) ideas
commonly implemented in interactive GIS viewers (e.g. ESRI 2004), (ii) dynamic
graphics and linked windows (Cleveland and McGill 1988, Swayne et al. 1992), (iii)

Table 1.
value legend class condition
1.0 lower Pi(c, sp)>1—al2
0.5 not distinguishable 0 2<Pi(c, sp)<l—al2

0.0 higher Pi(c, sp)<al2




[Institut Fuer Informatik] At: 09:05 14 January 2010

Downl oaded By:

524 E. J. Pebesma et al.

- Agulla - no2 | ne2 | no2

Ella Miew Halp
T m t[a]e A 4
| Legend i - na:2{global) na2rural
2 RN
: st | #

- "N -Hi- = §
@ = Aguila - no2 + no2 + no2
Flls View Help
= 1l g ]

03

| —

Figure 5. Map view for three scenarios showing classified cumulative density curves; with
respect to the attribute (NO, concentration) level 20 ppm, we classify CDF curves as ‘lower’
(1, if P>0.95, dark grey), ‘higher’ (0, if P<<0.05, light grey) ‘not distinguishable’ (0.5, if
0.05<P<0.95). The fourth panel shows the level cursor (vertical line), which is dynamically
adjustable for the attribute (concentration) with respect to which we want to classify
probabilities.

the concept of conditioning plots, or trellis plots (Cleveland 1993), and (iv) previous
attempts to show maps with confidence intervals (Pebesma and de Kwaadsteniet
1997) and the idea that (cumulative) probability is yet another dimension in GIS
(Pebesma et al. 2000). We focus on continuous variables. When the emphasis is to
visually explore observations, a dynamic graphics tool like xgobi (Swayne et al.
1992) or ggobi (http://www.ggobi.org/) may suffice.

As the actual method involves interaction with a computer program, we strongly
encourage interested readers to try the real application (see the next section): a
printed paper can never approximate the overwhelming experience of a dynamic
graphics application. Dynamic graphics systems answer questions and generate new
hypotheses faster than we can formulate them.

Many people are reluctant to present exceedance probabilities for a chosen
threshold because thresholds unavoidably have an arbitrary component to them:
why do we focus on the critical level of 35 and not 40? Given that cumulative or
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exceedance probabilities are one way of exploring probability density functions, the
need for a dynamic tool becomes imminent: after considering the probabilities of
being above a chosen threshold, questions immediately following about how
these probabilities change with threshold can be answered at the instant they are
posed.

Cleveland (1993) laid out the basic ideas underlying many of the visualizations
presented here. The two systems resulted from his work (trellis in S-Plus, lattice in
R) do provide sufficient plotting capabilities to make the type of composite maps we
present here, but they lack enough interactive functionality with the data plotted.
Therefore, and for reasons of computational efficiency, our application was built
from scratch.

6.1 Other methods for visualizing uncertain data

It is sometimes advocated (e.g. Goovaerts 1997) that simulation is the solution when
there is a need to deal with uncertainty. Understanding uncertainty by looking at
simulated random fields may help but is often not easy: it is hard to get an idea of
exceedance probabilities by looking at (many of) them.

However, the tool presented here can be used to visualize sets of simulations in
three ways:

(1) by computing a set of quantiles from a (large) set of simulations, and
visualizing these using the tool we present here (note that under many
conditions, like the examples used in this paper, simulation is not needed to
obtain these quantiles);

(2) by using the time dimension to show simulations in an animated fashion (this
will show sudden, large transitions, which can be avoided by smoothing
transitions, see Ehlschlaeger et al. (1997));

(3) by using the scenario slot to show and compare realizations side by side.

Although simulations could be shown as a spatial time series, their order is usually
of no value; it may also be useful to order them according to some posterior
likelihood (Switzer 2000). Simulated random fields do show the spatial variation
and correlation present in the attribute, whereas quantiles lose this information, and
will be more smooth than the variable modelled.

Another, static alternative to visualizing data and their (predictive) uncertainty
was given by Hengl et al. (2003) and Hengl ef al. (2004). It uses a two-dimensional
colour legend where one dimension (a colour scale, or hue range) represents the
predicted value (Z (s0)) and a second dimension (greyness, whiteness, or saturation)
increases with prediction error (a(sp)). Compared to our method, this approach has
the obvious advantage of being static, but also a number of drawbacks:

® by using two dimensions, it still separates first order (Z, mean) from second
order (o, uncertainty) effects; our approach does not separate them, because it
addresses the probability density function that unites them;

® on two-dimensional legends, matching between colours on the map and values
in the legend is difficult;

® when a(s() increases, colour vanishes, and it becomes impossible to distinguish
between values actually predicted;

® the method needs arbitrarily chosen threshold values for a(sy), which play an
important role in the resulting map.
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Simple interpolation algorithms, such as ordinary kriging, show predicted
surfaces where hot spots coincide with the data locations. Taking the predictive
probability into account, it may turn out that the locations with the largest
probability being above a given high critical level may not coincide with data
locations, but rather with locations where uncertainty is large.

6.2 User’s perspective

We did not evaluate extensively how happy prospective users (scientists, policy
makers) are with the visualization opportunities offered here (Evans 1997, Aerts
2004). Although this would be very valuable to evaluate, especially in a context
where several visualization alternatives were compared, it is simply beyond the scope
of the current study, which is about presenting a new alternative.

Using our visualization approach, users may not actually get a better under-
standing of the actual phenomena studied, but they definitely get a better, not only
qualitative but also quantitative understanding of the limits of our knowledge about
the phenomena. Compared to studying maps with predicted (interpolated) values
only, we believe that showing probability density functions better represent what we
know, and what we do not know. The tool we present here allows scientists to
explore these functions. Policy makers, although they may not like it, should be
aware that predictions are different from reality. We are convinced that policy
makers are aware that a modelled value is different from the true value, and that
scientists should reveal the limits of their knowledge.

6.3 Future plans

In the probability view, the current implementation gives, strictly speaking, no
exceedance probabilities but one minus the exceedance probability. An option to
choose between these will be added. Another view that we may add is that of the
actual probability density functions, with (shaded) the area under the density curve
that is selected (or results from a chosen quantile). Although this poses a scaling
problem as probability densities may vary by many orders of magnitude, their
notion and connection to histograms may give an alternative and sometimes easier
understanding of probabilities.

A foreseen future development is to extend the spatial visualization, which is
currently limited to gridded data, with polygon data. Also, work is in progress to
integrate this tool with the R environment for statistical computing.

7. Availability and applicability

The tool developed that implements the ideas presented here is called Aguila, which
is Latin for eagle. The software is available in binary and source code form from
http://pcraster.geo.uu.nl/projects/aguila/index.html

The source code is distributed under the GNU General Public License (GPL),
available from http://www.fsf.org/licensing/licenses/gpl.html. Aguila uses the GDAL
library (http://www.gdal.org/) to read the most commonly used grid formats.

As the tool is available in source code form, it can easily be and may get
integrated in a modelling environment. Because the modelling environment can be
anything that yields spatial or spatio-temporal probability distributions (or just time
series, or scenarios of maps, or just only grid maps) it can range from e.g. flood
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forecasting systems based on hydrological models using short term weather forecast
scenarios as input to spatial prediction model building tools.
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