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Abstract

INTAMAP is a Web Processing Service for the automatic interpolation of mea-
sured point data. Requirements were (i) using open standards for spatial data
such as developed in the context of the Open Geospatial Consortium (OGC),
(ii) using a suitable environment for statistical modelling and computation, and
(iii) producing an integrated, open source solution. The system couples an
open-source Web Processing Service (developed by 52°North), accepting data
in the form of standardised XML documents (conforming to the OGC Observa-
tions and Measurements standard) with a computing back-end realized in the
R statistical environment. The probability distribution of interpolation errors
is encoded with UncertML, a markup language designed to encode uncertain
data. Automatic interpolation needs to be useful for a wide range of applications
and the algorithms have been designed to cope with anisotropy, extreme values,
and data with known error distributions. Besides a fully automatic mode, the
system can be used with different levels of user control over the interpolation
process.

Key words: Environmental data, Environmental information, In-situ sensors,
Spatial interpolation, Geostatistics, OGC, SOA

1. Introduction

Spatial interpolation of in situ sensed variables such as meteorological vari-
ables, air quality variables, groundwater quality, or environmental radioactivity
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is a problem for which no simple, ‘one-fits-all’ solution exists. In an experi-
ment where several experts were confronted with interpolating the same data
set (EUR, 2005), the approaches differed strongly, and best results were ob-
tained by machine learning techniques as well as geostatistical methods. One of
the reasons behind this variety was that one needs to choose a model of spatial
variability before one can interpolate, and experts disagree on which models are
most useful.

A lack of generally accepted solutions has led to a situation where interpo-
lation experts with highly domain-specific expertise, who work in fields such as
mining, petroleum industry, environmental monitoring, or risk assessment, use
highly specialised tools. A side effect is that in several domains where interpo-
lation might be useful it is either not applied because of a lack of expertise, or
applied using algorithms that are too simplistic for the application at hand.

Motivated on one hand by the increasing availability of sensor data offered
in near real time, and on the other by the need to take quick decisions in cases
such as disaster management, where there is no time to consult interpolation ex-
perts, the INTAMAP! project has built an automated interpolation web service
that provides interpolation without requiring any specialised skills. This was
realized employing open standards together with using and providing an open
source software solution?®. As interpolation cannot be done without introducing
interpolation errors, the interpolation service returns meaningful information
about the interpolation error, characterising the uncertainty in the result. This
information might be in the form of an interpolation standard error or predic-
tion variance, the specification of a full conditional probability distribution, or
define probabilities of exceeding a number of given thresholds. Such error in-
formation may be ignored by some, but might help others to optimise decision
making in the presence of uncertainty, e.g. weighting the risks and costs of type
I and type II errors (false negatives or false positives — think of evacuating areas
not in danger, or not evacuating areas that should have been evacuated), or
deciding where monitoring efforts needs to be increased or can be decreased.

The paper is organised as follows. First, the interpolation challenges faced
when developing an automated mapping system will be discussed. Next, the sta-
tistical methods and decisions underlying the system will be described. Then,
the technical realization and system architecture are presented. Issues of per-
formance and embedding it in a service oriented environment are addressed.
Finally, the discussion will provide a perspective on how this service might be
used and extended, along with ideas for future developments of environmental
management systems based on service oriented architectures (SOA).

Thttp://www.intamap.org/
2http:/ /www.sourceforge.net/projects/intamap/



2. The interpolation challenge

The interpolation problem we want to solve is the following: given a set of
measurements of a continuous process, compute the best prediction at one or
more unmeasured locations, along with characteristics of the interpolation error
distribution such as the variance or quantiles.

Spatial interpolation can be seen as consisting of three stages. In the first
stage, a model for the spatial variability has to be selected. In the second,
its parameters are estimated. In the third stage, given this model and these
estimates, a prediction of the measured process is used to interpolate, and a
prediction error is characterized.

2.1. A general model
In geostatistics, typically models of the form

Z(s) = m(s) + e(s) (1)

are deployed (Cressie, 1993), with Z(s) the measured process at spatial location
s, m(s) the spatially varying (or constant) trend component, which could be
modelled as a linear in parameters regression model of the form m(s) = X (s)73
with X (s) often derived from layers in a GIS (Pebesma, 2006), 7 denoting matrix
transpose, # unknown regression coefficients, and e(s) usually a second order or
intrinsically stationary residual process. Non-linear geostatistical models may
extend this to
Y(s) = f(Z(s)) = m(s) + e(s)

with f(-) some non-linear function, such as the Box-Cox transform,
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and then aim to predict Y (s), carefully using the back transformation to finally
predict Z(s).

The first stage in a geostatistical analysis entails the choice of a trend func-
tion, a covariance function for the residual process, and enables the estimation
of parameters of both components in stage two. The third stage involves, given
this model and the observations, the spatial interpolation (prediction) using the
estimated model for new locations sg, for the linear case:

Z(s0) = m(so) + é(s0),

with new locations sy usually taken over a grid covering the region of interest.
Initially, the interpolation challenge addressed here ignores availability of trend
variables X (s), i.e. X(s) = 1 and m(s) = fp is an unknown constant. More
general cases will be mentioned in the discussion.

Spatial prediction under the linear case of model (1) would lead to uni-
versal or ordinary kriging. Three special cases will be discussed next, namely



the detection of geometric anisotropy, the presence of extreme values, and the
possibility to deal with known measurement errors and sensor models.

This project did not attempt to realize spatio-temporal prediction in an
automated fashion. The motivation for this is discussed in section 5.3.

2.2. Geometric anisotropy

Many environmental variables are subject to geometric anisotropy, meaning
the degree of spatial continuity is in some direction stronger than in others.
This phenomenon is typical for atmospheric pollutants diffusing like a plume in
a particular direction.

Hristopulos (2002) and Chorti and Hristopulos (2008) have developed method-
ology for the detection of geometric anisotropy directly from point data. The
method, referred to as CTI, is based on the covariance tensor identity (Swerling,
1962), which links sample-based gradients with the Hessian of the covariance
function. Assuming differentiability, CTI can estimate geometric anisotropy
without specifying a covariance model. This method is used in the INTAMAP
interpolation service.

2.3. The emergency case: spatial extremes

The original motivation for INTAMAP came from the monitoring of environ-
mental radioactivity at a European scale. EURDEP, the European radiological
data exchange platform?, collects radiological monitoring data from around 4000
sensors spread over most European countries and is available to decision-makers
in near real-time. The main purpose of this network is motivated by emergency
cases, where the exchange of these data among contributing countries facili-
tates the monitoring in near real-time of the spread of a radioactive release over
Europe. The first stage of an emergency, with a very localised but significant
release, is however one of the most difficult problems to interpolate. Several
approaches to this have been compared, and developed, within this project.

Early stages of a release, such as tested in the interpolation comparison
exercise mentioned previously (EUR, 2005), are characterised by many low ob-
servations and very few observations with extreme, outlying measured values.
Such data sets violate the assumptions behind ordinary kriging and universal
kriging, model (1). The INTAMAP automated interpolation service deals with
data containing extreme outliers, and primarily deploys an interpolation method
based on spatial copulas to interpolate these data (Kazianka and Pilz, in press,
2009). Spatial copulas are flexible models that combine separate specification of
correlation structure and spatial process marginal distributions, thus allowing
very general non-Gaussian kriging to be employed.

Kazianka and Pilz (in press) present a copula-based spatial modelling and
interpolation approach that works with both continuous and discrete marginal
distributions and which makes it possible to include covariates e.g. a spatial

3http://eurdep.jrc.ec.europa.cu/



trend or elevation. They show that their model generalizes trans-Gaussian krig-
ing (Cressie, 1993) and provides an alternative to generalized linear geostatistical
models Diggle and Ribeiro (2007). A Bayesian extension of the spatial copula
model is given in Kazianka and Pilz (2009c).

Experimenting with the spatial copulas for interpolation has taught us that
their run time requirements may be large: for large data sets and/or a large
number of prediction locations, computation may require hours or even days.
As a fall-back method for the case where copulas require too much time, trans-
Gaussian kriging has been implemented with the Box-Cox family (2) of power
and log transformations.

2.4. Observations from sensors with known errors

All observations on continuous variables are measured with some degree of
measurement error. Often, this error is unknown, or believed to be very small
according to the specifications of the producer of the sensor used. In other cases
however, the error magnitudes are known and considerable in size, e.g. because
they result from indirect sensing or elaborate and complicated calibration. An
example of this are the atmospheric chemistry measurements from satellites
such as OMI (Boersma et al., 2004). Interpolation of data with considerable,
known measurement error and / or known sensor models should take these
sensor models and errors into account.

In the INTAMAP interpolation service if error characteristics of the ob-
servations are specified a sequential interpolation method (Csaté and Opper,
2002) based on projected sequential Gaussian processes (Ingram et al., 2008a)
is available to optimally interpolate the spatial field. The main benefits of the
sequential approach are that they permit the treatment of non-Gaussian obser-
vation errors and non-linear sensor models without requiring high dimensional
integrals to be computed (Cornford et al., 2005). The projected nature of the
algorithm, which can be related to the fixed rank approach of Cressie and Jo-
hannesson (2008), makes it possible to control the computational complexity
of the posterior approximation (Ingram et al., 2008b) which makes the treat-
ment of large data sets possible, despite the use of likelihood based parameter
inference within the algorithm.

2.5. Spatial aggregation: estimating areal averages

Besides the usual interpolation to points (on a grid) in space, one may decide
to estimate average (or differently spatially aggregated) values, e.g. for complete
grid cells, or for larger areas. This may be convenient when decision making
does not take place for points, but rather for areas of some size, typically defined
by administrative boundaries. An example of this is that of emergency evac-
uation: we cannot evacuate single points, but decide whether neighbourhoods,
regions, villages, towns, or flood plain sections will be evacuated. In addition,
methods were developed and employed to correct for systematic errors between
measurements from different networks (Skeien et al., 2009).



3. Statistical implementation: the interpolation decision tree
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Figure 1: Decision tree for the interpolation method choices in the interpolation process that
takes place in R. References in text.

The decision tree for choosing an interpolation method automatically is
shown in Figure 1. In the context of the INTAMAP project, dedicated in-
terpolation methods have been implemented for (i) detecting and correcting for
anisotropy, (ii) dealing with skewed and extreme value distributions, (iii) deal-
ing with known measurement errors. Details of the major choices will be given
now.

8.1. Coordinate reference systems

Interpolation on the sphere, i.e., on longitute/latitude coordinates, is not
supported by the software developed. It is, however, allowed that the measure-
ment data come with longitute/latitude coordinates, and the prediction loca-
tions (e.g. the prediction grid) are in a certain projection. Before interpolation,
in that case, the measurement data coordinates are projected to this target pro-
jection. Alternatively, for more user control a target projection system can be
specified for both.



8.2. Anisotropy significant?

Anisotropy is taken into account in each of the interpolation procedures of
Figure 1, if the anisotropy ratio, i.e. the ratio between the correlation ranges in
the major and minor direction, is significantly different from one. A procedure
to efficiently obtain an approximate confidence interval for the CTI estimate of
the anisotropy ratio is given in Petrakis and Hristopulos (submitted). The con-
fidence interval estimate is used to test for significant anisotropy in the sample,
which would require the use of an anisotropic variogram model. If the latter
is required, CTI estimates of the anisotropy parameters (anisotropy ratio and
principal axes orientation) are used in the variogram model. In maximum likeli-
hood fitting of variogram functions, the CTI estimates can provide initial values
of anisotropy.

8.8. Extreme value distribution?

The decision whether to consider a variable as having an extreme value
distribution is also taken automatically (Figure 1). For a given variable z =
(21, ..., 2n), the data were considered strongly non-Gaussian when for the derived
variable 2/, defined by

A min(z) + o, if min(z) <0,
I if min(z) > 0,

with o, the standard deviation of z, if one or more of the following conditions
holds:

1. more than 10% of the values of 2z’ lie beyond the extremes of the whiskers
of a boxplot (i.e., are further than 1.5 IQR away from the nearest quartile,
with IQR the inter-quartile range of z’)

2. Q5 — Qa5 < IQR/3, with @ 5 and @ 25 the median and first quartile of
7', respectively.

3. Qr5(2') — Q5 < IQR/3, with Q 75 the third quartile of 2’

4. the identity transform A = 1 in the Box-Cox transform (2) falls outside
the 90% confidence interval for the estimated Box-Cox parameter for z’.

The first condition checks whether more than 10% of the data are “outlying”,
i.e. outside the whiskers of the boxplot. The second and third inequalities
check for asymmetry /skewness of the data. The last checks whether a Box-Cox
transformation makes the data distribution significantly closer to normality.

It should be noted that criteria 1-3 are in principle insensitive to sample
size. Criterion 4 however involves significance testing. This means that for very
large samples, very small, asymmetric deviations from normality will lead to
a decision that non-linear transformation (i.e., using copula or trans-Gaussian
kriging) is advisable. Of course, for A values close to one, this non-linearity is
modest and trans-Gaussian kriging is practically similar to ordinary kriging.



8.4. Automated variogram modelling

Automated, omnidirectional variogram model fitting takes place according
to the following steps:

1.

Let D be 0.35 times the length of the diagonal of the box that spans the
data, i.e. D = 0.351/dx? + dy? with dz the range of x coordinates and dy
the range of y coordinates of the data points;

for p distance intervals with boundaries 0, 2, 4, 6, 9, 12, 15, 25, 35, 50,
65, 80, and 100% of D, compute the classical, omnidirectional sample
variogram values 4(h;) with h; the average distance of all point pairs
available in distance interval i;

while the number of point pairs for lag ¢, N;, in the first lag interval
is smaller than 5, merge the first two distance intervals, recompute the
sample variogram, and lower p with one;

choose the following variogram model parameters as initial values for the
fit:

e sill: mean of the maximum and median value of the %(h;)
e nugget: minimum value of the §(h;)

e range: D/3.5, which is 10% of the length of the diagonal that spans
the data

e candidate values for the smoothness parameter x of the Matern var-
iogram model: 0.05, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2,
1.3,1.4,1.5,1.6,1.7, 1.8, 1.9, 2.0, 5.0, and 10.0;

for each of the variogram model types spherical, exponential, Gaussian,
and for the Matern model for all k values, fit the variogram model with
weighted least squares, using a Gauss-Newton algorithm, by minimizing
the weighted error sum of squares

SSerr = Z hZ (&(hz) - ’Y(hl))g

"=

N

with «(h;) the variogram model value for distance h;;
select the model (model type, nugget, sill, range, x in case of the Matern
model) with the smallest SS¢...

These heuristic steps have been presented earlier in Hiemstra et al. (2009) and
some of them in Pebesma (2004, 2005) and Pebesma and Wesseling (1998).

For the methods that used maximum likelihood fitting of variogram param-
eters, the variogram model and fitted values obtained by the procedure above
were taken as initial values. No further iteration over various variogram model
types took place by maximum likelihood.
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Figure 2: Technical set up of the automatic interpolation service. UncertML stands for
uncertainty markup language (see text); O&M stands for observations and measurements, an
XML standard for encoding monitoring network data.

8.5. Spatial aggregation

Spatial aggregation can in some cases be done by simple aggregation of a
series of point predictions, but other methods are necessary for estimation of
the associated error distributions and for non-linear aggregates. The INTAMAP
interpolation service uses the most efficient aggregation method for the problem
at hand: block kriging where this is allowed and available, and simulation with
numerical aggregation otherwise.

4. Technical realisation

4.1. OGC Web Services

Web service standards as agreed upon by standard bodies such as ISO
TC211%, OGC®, and adopted by the European INSPIRE directive (EUR, 2007)
are the basis for useful generic services to exchange geographic data. INTAMAP
has delivered an interpolation Web Processing Service (WPS, Schut (2007))
that is based on the open source 52°North implementation®) and is schemat-
ically shown in Figure 2. It accepts sensor data from a Sensor Observation

4http://www.isotc211.org
Shttp://www.opengeospatial.org/
Shttp://www.52north.org/



Service (SOS, Na and Priest (2007)), i.e. encoded as an Observations & Mea-
surements document (O&M, Cox (2007)), and returns the interpolation result
e.g. a GML document of a coverage encoded as a gml:RectifiedGrid. To
encode the interpolation error UncertML, a markup language for specifying
uncertain information that is represented probabilistically, has been developed
within the project, which OGC has currently released as an OGC Discussion
Paper” (Williams et al., 2009).

4.2. The interpolation back-end in R

The procedures for the statistical analysis of the data are implemented in
extension packages for R, the major open source environment for analysing
statistical data. As Figure 2 shows, this is not apparent to the user of the IN-
TAMAP Web Processing Service, since R runs only at the back-end. Interfacing
R from the Web Processing Service by using the http protocol (i.e., as a web
service, using the Rserve package, Urbanek (2009)) has the advantage that the
R process, doing the numerical work, may be running on a dedicated comput-
ing cluster behind a firewall. Coordinate transformations are also done in R
(Bivand et al., 2008). Multiple interpolation requests at the same time will be
executed in parallel.

4.3. Clients

To better illustrate the flexibility of the architecture from a users’ point
of view, the following clients have been developed to interface the INTAMAP
interpolation service:

1. A thick, yet still web based, client based on the mapguide open source®

client has been developed for use in geotechnical applications, e.g. for
the interpolation of soil geochemical variables and borehole information.
In the client, one can request all properties of the interpolation process:
mean, variance, quantiles or probabilities of exceeding a threshold (Figure
3).

2. An application for the visualization and interpolation of gamma dose rate
data on the European scale. The application is based on the deegree-
framework? and uses a Web Map Service (WMS 1.3) interface to show
monitoring network locations along with grid maps returned from the IN-
TAMAP WPS. It transforms the interpolation results into maps according
to national guidelines for radiation mapping. In addition a client based
on mapbender!? is under development. Internally BfS, the Germany radi-
ological monitoring authority, also uses an application that directly calls
the INTAMAP R package for interpolation.

"http://xml.coverpages.org/OGC-UncertML.html
8http://mapguide.osgeo.org/
9http://www.deegree.org

10www.mapbender.org
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Figure 3: The INTAMAP client based on mapguide OS; on the right, the user can select and
blend various properties of the probability distribution of the interpolated value.

3. A dedicated client for the interpolation of European near real-time air
quality data from a SOS (Hennebohl et al., 2010), that uses the aguila
(Pebesma et al., 2007) interactive viewer of spatio-temporal data encoded
as probability distributions (Figure 5).

4. The trylntamap web client, a simplified web form!'! that allows to paste
comma-separated data with x,y,value on each line and interpolate this;
results are shown as images (Figure 4), and on a Google Earth plugin.

5. A Java based mobile phone client that can query observations from a
simplified SOS interface, or allow users to add observations in the field,
which can then connect to the INTAMAP service through a simplified
interface developed to minimise bandwidth usage and shows interpolated
values, and uncertainties on a mobile phone or other mobile device.

5. Discussion

5.1. Spatial interpolation

The INTAMAP project has contributed to change the status of geostatistical
interpolation from a playing field where one needed to have expertise, knowl-
edge of jargon, be able to use complicated routines and a lot of experience to

Havailable at http://www.intamap.org/
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compute and model variograms, to a status where one has a single function or
web service where data are sent, and interpolation along with interpolation er-
ror characteristics are returned. As a result automatic mapping functions based
on advanced algorithms are available for real-time applications and these func-
tions can be used further for benchmarking exercises by the research community.
This outcome has been realised by finding consensus within a limited group of
researchers. A number of issues can potentially lead to a better interpolation
system, in particular:

e the decisions, especially the inclusion of condition 4, when to change to
using non-Gaussian (copula or trans-Gaussian) kriging,

e the exact steps taken for methods-of-moments variogram computation and
model fitting, notably the lack of adjustment of D and the choice of lag
intervals.

Other issues result from the fact that software development was carried out by
project partners with different backgrounds. Two items can be mentioned:

e Both maximum likelihood and (global) ordinary kriging need to solve sys-
tems of linear equations of size n x n, with n the number of observations.
When n becomes large, say over 1000, then this process takes very long.
For ordinary kriging this is currently solved by reducing the system by
default to only address the nearest 50 observations. The projected se-
quential (psgp) method is designed to work efficiently for large data sets,
and is able to work with global neighbourhoods.

e Developing software with a group of developers across project partners
from different countries inevitably leads to some extent to isolated deci-
sions being taken by contributers, and inhomogeneity in the final soft-
ware system. Among these inhomogeneities, we should mention (i) two of
the three interpolation methods use maximum likelihood for estimating
model parameters, the other uses the method of moments estimator; (ii)
during maximum likelihood estimation, the copula method further adjusts
anisotropy parameters, whereas the psgp method does not, (iii) only the
ordinary kriging method can deal with external predictors of the form of
(1), in which case it changes to universal/external drift kriging.

As this is the outcome of a research project from several partners that have a
lasting interest in the methodology and technology, it is hoped that involvement
of a larger group of users, software developers and geostatisticians will help
continue improving on the current state of this open source project.

The INTAMAP interpolation procedure can be seen as a statistical model,
with several sub-models. As for any statistical model, it is possible to come up
with cases where the model will not work. Kriging will not work with duplicate
observations; variogram modelling will fail in the presence of strong outliers.
Removing errors or duplicates is not dealt with automatically, as we feel it is
the responsibility of the user (or client) to address them. There are special cases

13



4407 o S~ E

3es07 4 | B F

semivariance

20407 o | L

1ev07 4 | k
i

. 43,1.3866+04] T T T T T T
1.386e+04,2.077€+04] 500000 1000000 1500000 2000000 2500000 3000000
2.077€+04,2.768¢+04 distance

010 o L
4e+07 o E ye

008  © o ° L

se407 / L

semivariance
semivariance
L
T

2e+07 / E

16407 L

T
1e+05 20405 3e+05 16406 26406 36406

distance d distance

C

Figure 6: a. Simulated data of measured gamma dose rate values after a modelled release; b.
Automatically modelled and fit variogram on raw data; c. Idem, but after manual adjustment
of the maximum distance of the variogram, d. Automatically modelled and fit variogram on
Box-Cox transformed data with A = —0.3

of interpolation problems for which the interpolation service developed will not
work well. Examples are: (i) there are fewer than 30 observations (an error will
be raised), (ii) the process Z(s) contains an extreme, but the data carries very
little information about it, and (iii) the process is mixed discrete-continuous,
e.g. daily rainfall in convective systems. For special cases like (iii), dedicated
procedures (e.g., Schuurmans et al. (2007)) could be developed and added to
the current system. An example where the automatic variogram fitting for
untransformed data did not work well, is shown in Figure 6. For this case, the
automatic procedure would have chosen the copula or trans-Gaussian methods,
which appears to give a better fit in Figure 6.)

As opposed to a generic interpolation algorithm, the interpolation of real
variables with known characteristics would in addition to measurement data
typically use further information: for air quality one would like to use remotely
sensed data, land use and/or traffic information, for environmental radioactiv-

14



ity it might make sense to use geology and altitude. Although such information
might be readily available, the appropriate interpolation service would become
domain specific (only relevant for a specific variable) and location specific (only
useful for a specific region), unless one includes the (reference to the) additional
information in the service request and provides generic models only, e.g. the
universal kriging/external drift model (Hengl et al., 2004). The generic interpo-
lation service developed here can be used as a first major component to build
such a specific interpolation service. An example is given in Hennebohl et al.
(2010).

It should be noted that several of the models implemented at the R level
(copula, ordinary kriging) do provide for the inclusion of trend variables.

5.2. Statistical methods beyond interpolation

In addition to interpolation methods, methods for monitoring network har-
monisation (bias estimation and removal) were also developed, but are not part
of the automated interpolation framework, as this should be done before in-
terpolation takes place. The same is true for outlier removal and monitoring
network optimisation. With the software developed for and experience gained
during INTAMAP, it would be relatively simple to customize the INTAMAP
web service and perform these manipulations.

5.3. Extensions: space-time

Phenomena for which near real-time interpolation is relevant are usually
dynamic in time, and the interpolation service set up currently ignores time.
The step from spatial interpolation to spatio-temporal interpolation is not a
trivial one, and again the current development can be used as a first building
block for it. For example, Hiemstra et al. (2009) and Hennebohl et al. (2010)
used a spatial nugget over time that was fixed over time to suppress some of the
variation that otherwise occurred while interpolating subsequent time steps of
gamma dose rate and PMg, respectively.

One motivation for not addressing time was that in space-time modelling
through a spatio-temporal stationary covariance function some kind of grad-
ual development of the spatial field over time is usually assumed. In case of
unexpected extremes (a nuclear accident), such assumptions may lead to un-
derestimation of the real problem. Further, the behaviour of many variables is
subject to transport and diffusion, and involving a transport model would again
make the approach domain specific.

For all extension directions: including static GIS information, including dy-
namic mechanistic models, and including the temporal component, the real chal-
lenge lies in developing a method (one or more services) that acknowledges that
data are subject to errors, models approximate reality and introduce further er-
rors, and as a consequence spatio-temporal interpolations and model predictions
are subject to error as well. These errors should be informative to, and used by,
the next level of information uptake, be it modelling or decision making. The
development of UncertML (Williams et al., 2009) within the INTAMAP project
has been a major first step in this direction.
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5.4. Interfaces and technology

In the current implementation, in an interpolation service request the user is
able to specify that a specific method, and optionally a specific parameter setting
is used. The default is automatic interpolation (automated method selection,
variogram model selection and parameter fitting).

Some of the interpolation methods implemented need a considerable amount
of time to process, of the order of hours or more; the interpolation service
has been set up to only select methods that are estimated to finish within a
time limit defined in the request, which defaults to 30 seconds. The timing is
estimated by fitting a loess function for each interpolation method to a large set
of combinations of number of observations and number of prediction locations.
When installing the R INTAMAP package, the user can choose to recalibrate
the time estimation functions.

Asynchronous use of the service has not been implemented. Although the
WPS 1.0 standard does provide the infrastructure for this, it would have been a
considerable challenge to retrieve the progress status of the R process, as asyn-
chronous communication with R would have to be set up as well, and all R
functions would require extension to report their progress status. The current
service allows approximate time evaluation prior to execution, and the advan-
tages of having asynchronous interaction with the WPS were not considered
large enough to give it high priority.

The observations read by the INTAMAP interpolation service need to be
contained in an O&M document, but not every O&M document will be ac-
cepted. This is because O&M accommodates practically every possible observa-
tion scenario, including time series data and imagery data, which are cases that
make little sense to send to an interpolation service. Availability of SOS pro-
files for particular application areas (such as meteorology or seismology) should
make the adoption more easy. The INTAMAP package will attempt to take
geographic projections into account, if possible. This includes the possibility of
supplying observations and prediction locations in different projections.

Several instances of the INTAMAP interpolation service are publicly acces-
sible for testing and research purposes. Users may also download the software
and install and run the service in their own public or private environment.

Besides interpolated values, the interpolation R process can return meta-
information, such as: which method was used, what the values of the fitted
parameters are, and maybe even some relevant diagnostic plots, e.g. of the
sample variogram and fitted model. This information is currently not passed
through the web service interface.

When running a web service, it is hard to be certain that the service or server
will not at some stage get overloaded when many server requests arrive at the
same time. Availability, scaling and load balancing has not been addressed, but
may become an issue. Solutions for this are found in the area of grid and cloud
computing (Woolf and Shaon, 2009; Baranski, 2009).
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6. Conclusions

The generic automatic interpolation service developed in the INTAMAP
project can be used, installed, deployed, extended and/or modified free of
charge. It copes with a number of “difficult” cases that include data with
strong anisotropy, data with skewed or extreme value distributions, and data
with known measurement errors.

All the interpolation software has been developed as R packages that can be
downloaded from CRAN'? and can in addition to the web service be used inter-
actively or be used from other environments, e.g. from python or shell scripting,
data bases, through SOAP (W3C, 2007), or on a mobile device, meaning that
potential users of the interpolation technology are not forced to use the WPS
protocol. Further uptake and usage as well as further development of suitable
clients will extend the success of the interpolation Web Processing Service.

The current version should be seen as a starting point that is open for further
improvement and joint development with users and specialists.

7. Where to find the software

All software developed, as well as several test data sets are available from
sourceforge'®, project intamap, and are distributed under the GPL version 2'4
or higher. Working instances of the interpolation service are mentioned on the
intamap web site'®. The R packages produced by the INTAMAP project that
are now on CRAN are:

intamap provides the basic interpolation routines and classes, and all code for
anisotropy estimation and spatial copulas

psgp provides projected sparse Gaussian process code; it requires the C++
library IT+4 to be installed on the host system, and is therefore only
available as a (linux) source package, at this moment not as binary package
for Windows or MacOS.

intamapInteractive provides code for bias estimation, bias removal, and mon-
itoring network optimization.
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