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Technical details

• SAGIS2 has two main aspects: (i) Multivariate Analysis, (ii) Geostatistics

• assignment: 10%; tests: (i) 40%, (ii) 50%, all compulsory

• study guide: http://www.geog.uu.nl/∼pebesma/sagis2/

• computer classes: http://webct.uu.nl/

• reader: verkoopruimte

• teaching assistant: Hanneke Schuurmans
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What is multivariate analysis?

joint analysis of multiple variables, in relation to (i) a dependent variable (ii) each
other.

supervised :

• prediction of a single variable from a set of predictor variables
• one dependent, multiple independent
• simple regression analysis → multiple regression analysis
• statistical learning

unsupervised :

• simultaneous analysis of multiple variables
• what is the (common) story
• what is their (cor)relation, interaction
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What is geostatistics

• prediction, not (only) under a given condition, but at a specific spatial location

• spatial correlation plays a (lead) role

• naturally extends (multiple) regression models

• univariable; multivariable extends unsupervised multivariate analysis
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Multivariate analysis

• matrix algebra

• multiple regression

• ordination techniques:

? principal component analysis
? (factor analysis)
? (correspondence analysis)

• clustering and classification:

? discriminant and canonical analysis
? cluster analysis

sagis2, 2005
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Goals of multivariate analysis

unsupervised : data reduction, finding groups

supervised : predicting values; predicting class membership

general : finding patterns, stories, exploring hypothesis

sagis2, 2005
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Why matrix algebra?

1. multivariate data are easily expressed as matrices

2. dimension “disappears”

3. geometric interpretation

sagis2, 2005
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Vectors and spaces

a vector has a length and a direction (coordinates).

length: |~a| =
√

a2
1 + a2

2 + ... + a2
n

addition: ~c = ~a +~b:

scalar multiplication: ~c = 5~a = (5a1, ..., 5an),

inner product: ~a ·~b = a1b1+a2b2+ ...+anbn (dot product, scalar product): scalar;
length of one vector projected on the other, times the length of the other:

~a ·~b = |~a||~b| cos φ.
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angle φ between ~a and ~b: φ = cos−1 ~a·~b
|~a||~b|

outer product: ~a×~b (vector product): vector; perpendicular to the surface formed

by ~a and ~b, such that (~a, ~b and ~a×~b) for a right-handed set Length: |~a||~b| sinφ.

~a and ~b in the same direction: if ~a · ~b = |~a||~b| (Vectors exactly in the same or
opposite direction are called dependent.)

~a and ~b orthogonal (perpendicular) if ~a ·~b = 0

~a and ~b orthonormal: when ~a ·~b = 0, and |~a| = |~b| = 1.
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How do we define a space?

Minimum requirement for n dimensions: n independent, non-zero vectors

Say, a basis is formed by n vectors {a1, a2, ..., an}, then any point in the space
spanned by these vectors can be expressed as (λ1a1, λ2a2, ..., λnan)

• orthonormal basis 2D: (1, 0), (0, 1)

• non-orthonormal basis 2D: (1, 0), (1, 1)

• invalid basis 2D: (1, 0), (2, 0)
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What is a matrix?

Square pattern (table) of numbers:[
2 1 3
0 −1 9

]

Rows: m = 2, columns: n = 3

First row: top; first column: left

an m× n (2× 3) matrix

sagis2, 2005
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Special cases:

row-vector m = 1:
a1,· =

[
2 1 3

]
column-vector n = 1:

a·,2 =
[

1
−1

]
scalar m = n = 1: [3] or just: a1,3 = 3

transposed : ai,j → aj,i (rows and columns exchanged). Symbol: AT or A′.

[
2 1 3
0 −1 9

]′
=

 2 0
1 −1
3 9


sagis2, 2005
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square matrix m = n: [
2 1
0 −1

]
symmetric matrix m = n, ai,j = aj,i (square, and AT = A):[

2 1
1 −1

]

diagonal matrix ai,j = 0 for each i, j where i 6= j (always square and symmetric) 2 0 0
0 −1 0
0 0 3


identity matrix I ai,j = 0 for each i, j where i 6= j, diagonal elements have value

sagis2, 2005
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1 (special case of diagonal matrix) 1 0 0
0 1 0
0 0 1


null matrix ai,j = 0, for each i, j  0 0 0

0 0 0
0 0 0
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Why matrix algebra?

Notation compact, structured

Abstraction structure of calculations arises, independent of dimensions

Data matrix question forms, soil samples, “boorformulieren” etc.

Geometry volumes, distances, etc.

Practice computer languages (matlab, octave, mathematica, S (S-Plus, R), ... ;
programming libraries

A = B * C

sagis2, 2005
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Element-wise matrix operations

addition A = B + C: 1 3 3
2 3 0
5 3 2

 =

 1 2 3
0 1 0
0 0 1

 +

 0 1 0
2 2 0
5 3 1



subtraction A = B − C: 1 2 3
0 1 0
0 0 1

 =

 1 3 3
2 3 0
5 3 2

−
 0 1 0

2 2 0
5 3 1
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scalar multiplication A = cB:

2

 1 2 3
0 1 0
0 0 1

 =

 2 4 6
0 2 0
0 0 2
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Multiplication: the matrix product

2x1 + 3x2 = 6
4x1 + x2 = 12

[
2 3
4 1

] [
x1

x2

]
=

[
6

12

]
[

2 3
] [

x1

x2

]
= 2× x1 + 3× x2 = 6

[
2 3
4 1-

] [
x1

x2?

]
=

[
6

12

]

sagis2, 2005
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BC 6= CB:

[
0 1 3
2 1 −1

] 1 2
2 1

−1 0

 =
[
−1 1

5 5

]
 1 2

2 1
−1 0

[
0 1 3
2 1 −1

]
=

 4 3 1
2 3 5
0 −1 −3
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Rules for matrix multiplication

1. B = C ⇒ AB = AC en BA = CA

2. (A + B)C = AC + BC en C(A + B) = CA + CB

3. (AB)C = A(BC)

4. AI = IA = A

5. (AB)′ = B′A′ [from which follows: A′A = (A′A)′]

sagis2, 2005
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Systems of equations Ax = b

2x1 + x2 + 3x3 = 6
x1 + 3x2 + 3x3 = 12

2x1 − x2 = −3 2 1 3
1 3 3
2 −1 0

 x1

x2

x3

 =

 6
12
−3


or: Ax = b

Approach:

1. zero lower left triangle

sagis2, 2005



21

2. back substition

sagis2, 2005
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zero element (3, 1), subtract line 1 from line 3: 2 1 3
1 3 3
0 −2 −3

 x1

x2

x3

 =

 6
12
−9


zero element (2, 1), subtract line 1 from (2 × line 2): 2 1 3

0 5 3
0 −2 −3

 x1

x2

x3

 =

 6
18
−9


zero element (3,2), add (2 × line 2) to (5 × line 3): 2 1 3

0 5 3
0 0 −9

 x1

x2

x3

 =

 6
18
−9


sagis2, 2005
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−9x3 = −9 : x3 = 1.

Substitution in 2 yields: 5x2 + 3 = 18 : x2 = 3

Substitution in 1 yields: 2x1 + 3 + 3 = 6 : x1 = 0.

sagis2, 2005
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Multiple systems of equations

 2 1 3
1 3 3
2 −1 0

 x11 x12

x21 x22

x31 x32

 =

 6 2
12 1
−3 4


 2 1 3

1 3 3
0 −2 −3

 x11 x12

x21 x22

x31 x32

 =

 6 2
12 1
−9 2
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Matrix inversion: AA−1 = I

definition matrix inversion:

AX = I ⇔ X = A−1

 2 1 3
1 3 3
2 −1 0

X =

 1 0 0
0 1 0
0 0 1


 2 1 3

1 3 3
2 −1 0

1 0 0
0 1 0
0 0 1
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subtract line 1 from line 3: 2 1 3
1 3 3
0 −2 −3

1 0 0
0 1 0

−1 0 1


multiply line 2 with 2:  2 1 3

2 6 6
0 −2 −3

1 0 0
0 2 0

−1 0 1


subtract line 1 from line 2: 2 1 3

0 5 3
0 −2 −3

1 0 0
−1 2 0
−1 0 1


sagis2, 2005
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multiply row 2 by 2, multiply row 3 by 5:

 2 1 3
0 10 6
0 −10 −15

1 0 0
−2 4 0
−5 0 5


add line 2 to line 3:  2 1 3

0 10 6
0 0 −9

1 0 0
−2 4 0
−7 4 5


multiply line 1 and 2 by 3:

 6 3 9
0 30 18
0 0 −9

3 0 0
−6 12 0
−7 4 5
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add line 3 to line 1; add 2 times line 3 to line 2: 6 3 0
0 30 0
0 0 −9

−4 4 5
−20 20 10
−7 4 5


divide line 2 by 10:  6 3 0

0 3 0
0 0 −9

−4 4 5
−2 2 1
−7 4 5


subtract line 2 from line 1; multiply line 3 by -1:

 6 0 0
0 3 0
0 0 9

−2 2 4
−2 2 1

7 −4 −5
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multiply line 1 by 11
2, multiply line 2 by 3:

 9 0 0
0 9 0
0 0 9

−3 3 6
−6 6 3

7 −4 −5


this yields:

9IA−1 =

 −3 3 6
−6 6 3

7 −4 −5


or:

A−1 =
1
9

 −3 3 6
−6 6 3

7 −4 −5

 =

 −1/3 1/3 2/3
−2/3 2/3 1/3

7/9 −4/9 −5/9
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Solving systems with the inverse

A−1A = I

AX = B

(given A−1 exist!)
A−1AX = A−1B

X = A−1B.
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Singular matrix

[0],
[

0 0
0 0

]

A =

 2 1 3
1 3 3
4 2 6


when we subtract 2 times line 1 from line 3 aftrekken, we have: 2 1 3

1 3 3
0 0 0


sagis2, 2005
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|A| = 0

sagis2, 2005
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Application: linear regression

observation i:

yi = β01 + β1Xi,1 + β2Xi,2 + ... + βpXi,p + ei =
p∑

j=0

Xi,jβj + ei

observation i, matrix notation:

yi = [1 Xi,1 ... Xi,p]


β0

β1
...

βp

 + ei = Xi,·β + e

all observations, matrix notation, Xi,· the i-th row in X:

y = Xβ + e

sagis2, 2005
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Least squares solution

find β for which the sum of squared residuals is minimal.

R =
n∑

i=1

e2
i = e′e = (y −Xβ)′(y −Xβ) =

y′y − 2β′X ′y + β′X ′Xβ

The derivative to β is:
δR

δβ
= −2X ′y + 2X ′Xβ

(this is a p× 1 vector) The least squares estimate β̂ of β is obtained by solving
δR/δβ = 0:

−2X ′y + 2X ′Xβ̂ = 0
X ′Xβ̂ = X ′y

sagis2, 2005
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X ′Xβ̂ = X ′y

compare with
Ax = b

Ax = b, with A = X ′X, x = β and b = X ′y

Solution:

β̂ = (X ′X)−1X ′y

sagis2, 2005
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Example simple linear regression
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0.0 0.5 1.0 1.5 2.0

1.
0

2.
0

3.
0

4.
0

x

y

y = β0 × 1 + β1 × x = Xβ + e
1
2
2
3
3
4

 =


1 0
1 0
1 1
1 1
1 2
1 2


[

β0

β1

]
+


e1

e2

e3

e4

e5

e6


X ′X =

[
6 6
6 10

]
, β̂ = (X ′X)−1X ′y =

[
β0

β1

]
=

[
1.5

1

]
y = 1.5 + 1X + e

sagis2, 2005
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Application: projection

Projection matrices P satisfy:

• P ′P = PP ′ = I

• vectors are normalized and orthogonal (orthonormal)

Projection of points in X is done by XP

Projected points have new coordinates, but their relative postions are not
disturbed (angles, distances)

sagis2, 2005
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X =


0.18 2.64
0.61 1.40
0.18 0.85
0.54 2.26

 , P =
[

0.50 −0.87
0.87 0.50

]
, XP =


2.38 1.17
1.52 0.17
0.82 0.27
2.23 0.66


in 2D, for angle φ (counter clockwise from x),

P =
[

cos(φ) − sin(φ)
sin(φ) cos(φ)

]

φ = π/2 : P =
[

0 −1
1 0

]
φ = π : P =

[
−1 0

0 −1

]

sagis2, 2005
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Determinant

x1 + 2x2 = 3
x1 + 3x2 = 5

We can eliminate x2 by multiplying eq. 1 by 3 and eq. 2 by 2:

3x1 + 6x2 = 9
2x1 + 6x2 = 10

next, we subtract eq. 2 from eq. 1, yielding x1 = −1; substitution yields x2 = 2.

sagis2, 2005
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The general case

a1x1 + b1x2 = c1

a2x1 + b2x2 = c2

multiply eq. 1 by b2 and eq. 2 by b1:

a1b2x1 + b1b2x2 = b2c1

b1a2x1 + b1b2x2 = b1c2

subtracting eq. 2 from eq. 1 yields:

x1 =
b2c1 − b1c2

a1b2 − a2b1
, and x2 =

a2c1 − a1c2

a1b2 − a2b1

only a finite solution when a1b2 − a2b1 6= 0.

sagis2, 2005
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a1b2 − a2b1 =
∣∣∣∣ a1 b1

a2 b2

∣∣∣∣.

sagis2, 2005
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Calculation of determinant using sub-determinants

∣∣∣∣∣∣
1 2 3
0 2 2
1 1 3

∣∣∣∣∣∣ = 1
∣∣∣∣ 2 2

1 3

∣∣∣∣− 2
∣∣∣∣ 0 2

1 3

∣∣∣∣ + 3
∣∣∣∣ 0 2

1 1

∣∣∣∣ =

1× 4− 2×−2 + 3×−2 = 2

tekens:
+ − + −
− + − +
+ − + −
− + − ...
...

sagis2, 2005
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Save calculations by simplifying the system:∣∣∣∣∣∣
1 2 3
0 2 2
1 1 3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 2 3
0 2 2
0 −1 0

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 2 3
0 2 2
0 0 1

∣∣∣∣∣∣
= 1× 2× 1 = 2

If, in Ax = b the determinant of A, |A| = 0, then A is singular and Ax = b
cannot be solved for x (if b 6= 0).

sagis2, 2005
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Eigenvectors, eigenvalues

Given a square matrix A, suppose that a vector x 6= 0 exists, such that

Ax = λx

with λ a constant (scalair), then x is an eigenvector of A, en λ is the
corresponding eigenvalue.

A square matrix A has as many eigenvectors as rows (columns), and the complete
set of eigenvectoren satisfies:

AX = XΛ

with eigenvectors the columns of X, en with Λ a diagonal matrix with diagonal
elements the eigenvalues of the corresponding eigenvectors.

sagis2, 2005
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Calculation of eigenvectors and -values

We can write
Ax = λx

as
Ax− λx = 0

of
(A− λI)x = 0.

Solution:

1. solve
|(A− λI)| = 0

for the eigenvalues λ;

2. substitute these values in Ax = λx and solve for the eigenvectors x

sagis2, 2005
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Properties

1. Symmetric matrices have orthogonal eigenvectors

2. Eigenvalues of 0 correspond to eigenvectors in the directions (dimensions) that
are not present in the matrix.

sagis2, 2005
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Example: eigenvalues/vectors

Suppose A =
[

4 1
2 3

]
. Solve∣∣∣∣ 4− λ 1

2 3− λ

∣∣∣∣ = (4− λ)(3− λ)− 2 = λ2 − 7λ + 10 = 0. This can be

decomposed into (λ− 2)(λ− 5) = 0 and the eigenvalues are λ1 = 2 and λ2 = 5.
The eigenvectors are found by solving[

4 1
2 3

] [
x1

x2

]
= 2

[
x1

x2

]
, and

[
4 1
2 3

] [
x1

x2

]
= 5

[
x1

x2

]
The first equation leads to the solution 2x1 + x2 = 0, for which any (scalar)
multiple of [−1 2]′ is a solution. The second eigenvalue leads to multiples of
[1 1]′ as solution. Computer programs normalize the eigenvectors; signs are
arbitrary.

sagis2, 2005
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Covariance, correlation

• variance: measures variability

Var(x) =
1

n− 1

n∑
i=1

(x− x̄)2

• covariance: measures linear depenence, non-normalized

Cov(x, y) =
1

n− 1

n∑
i=1

(x− x̄)(y − ȳ)

• Cov(x, x) = Var(x)

sagis2, 2005
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• |Cov(x, y)| ≤
√

Var(x)Var(y)

• correlation: a normalized measure [−1, 1] of linear dependency between x and
y:

Corr(x, y) =
Cov(x, y)√

Var(x)Var(y)

• symmetric: Cov(x, y) = Cov(y, x), Corr(x, y) = Corr(y, x)

• if x and y are normalized (mean zero, unit variance), then Corr(x, y) = Cov(x, y)

sagis2, 2005
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covariance/correlation matrix

Given a data matrix X (m rows with records, n columns with variables xj),

• the covariance matrix C is the n× n matrix with elements Ci,j = Cov(xi, xj)

• the correlation matrix R is the n× n matrix with elements Ri,j = Corr(xi, xj)

• covariance/correlation matrices are square and symmetric

• the diagonal of covariance matrices: Ci,i = Var(xi)

• the diagonal of correlation matrices: Ri,i = 1

sagis2, 2005
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Data reduction

Main goal in observational studies:

How can we reduce the research findings to a few relevant and clearcut
conclusions, unambiguously supported by the observations
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Data reduction

Main goal in observational studies:

How can we reduce the research findings to a few relevant and clearcut
conclusions, unambiguously supported by the observations

Main approaches in multivariate analysis:

1. variables find one or a few variables that summarize all variability

2. cases find (or test) a grouping variable that summarize much of the case-to-case
variability

1. ordination methods; 2. clustering, discrimination

sagis2, 2005
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Eigenvalue/vector properties

AX = XΛ

• if A is symmetric, X is orthonormal

• if A is orthonormal, λi are all equal

• the more A deviates from orthonormal, the large the difference between λ1 and
λn

• if A is singular, one or more of the λi are zero; the number of positive λi’s
equals the number of dimension spanned by the columns (rows) of A

• the sum of λi equals the sum of the diagonal elements in A, Ai,i

sagis2, 2005
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Centering and normalizing data variables

Suppose data are stored in a matrix X;

centering means that each column (variable) xj is replaced by xj − x̄j ⇒ zero
mean

normalizing means that each column (variable) xj is replaced by
xj−x̄j

σj
⇒ zero

mean, unit variance

centerend data: Cov(X) = 1
m−1X

′X ⇒ column inproducts

normalized data: Corr(X) = 1
m−1X

′X

sagis2, 2005
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Eigenvalues/vectors: properties

• eigenvectors of a symmetric matrix are orthonormal

• eigenvectors are ordered by their corresponding eigenvalue; the first eigenvector
has (by definition) the largest eigenvalue

• sum of eigenvalues equals sum of diagonal elements A

• given a value of λ, how to solve for x?

? substitute λ in (A− λI)x = 0
? now A− λI is known, and 0 is known
? try values for e.g. x1,1

? make sure that you don’t end up with a 0 vector

sagis2, 2005
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Singular value decomposition (SVD)

Xn×m = Rn×rΛr×rK
′
r×m

r ≤ m ≤ n

X: centered data matrix
R: columns: eigenvectors of XX ′

Λ: singular values of X (square root of pos. eigenvalues X ′X of XX ′)
K: columns: eigenvectors of X ′X

X ′X symmetric ⇒ K orthogonal
XX ′ symmetric ⇒ R orthogonal
K ′K = KK ′ = I (K orthonormal)
R′R = RR′ = I (R orthonormal)

sagis2, 2005
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Consequences SVD

Xn×m = Rn×rΛr×rK
′
r×m

project X on eigenvectors of X ′X: post-multiply with K:

Yn×r = Xn×mKm×r = RΛK ′K = RΛ

X ′X ⇒ columns of K are independent:

Y ′Y = (XK)′XK
svd: X = RΛK ′ ⇒ XK = RΛK ′K = RΛI = RΛ
Y ′Y = (RΛ)′RΛ = Λ′R′RΛ = Λ′IΛ = Λ′Λ = Λ2 (diag.)

singular values of X are the square root of singular values (eigenvalues) of X ′X.

sagis2, 2005
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PCA by SVD

• centered (possibly normalized) data matrix X

• Y = XK, K the eigenvectors of X ′X (Cov(X) or Corr(X))

• X ′X is symmetric ⇒ K is a projection matrix

• Y ′Y = Λ2:

? the variables Y are independent
? the variance of the Y is Λ2

sagis2, 2005



67

Principal components – what are they?

Principal components (PC’s) are directions (new axes);

• the first PC explains maximum variability in a data set

• the second PC explains, independent from the first, maximum (remaining)
variability

• subsequent PC’s are independent

sagis2, 2005
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Principal components: loadings and scores

Principal components are formed by the eigenvectors of the covariance or
correlation matrix; if Xj is the j-th centered column in data matrix X,

PC1 = α1,1X1 + α2,1X2 + ... + αn,1Xm

with α the first eigenvector (column) of X ′X. We call the coefficients α the
loadings of a PC. They tell the direction. Each PC has as much loadings as X has
variables (columns).

The projected (new) values along the new axis (PC) are called the scores. The
number of scores for a PC is equal to the number of cases (rows) in X.

The eigenvalues equals the variance taken into account by a PC. The sum of the
eigenvalue equals the sum of the variances (diagonal elements of
Cov(X) = 1

m−1X
′X

sagis2, 2005
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Rationale behind principal components

• hopefully, a few PC’s summarize the essence of the data:

• retain the first few PC’s, and abandon the rest.

• always a good first “shot” at correlated data (exploration)

• unfortunately, essential messages may be “hidden” in later PC’s, or distributed
over many PC’s

sagis2, 2005
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The “size and shape” effect

Often, the more interesting information is in the second (or later) component;
examples:

fossil data the first component measures size, the second shape (width/height);
size tells something about age, shape about species

spectral curves first component measures brightness (exposed vs. shaded areas),
the second differences in spectral curve shape (amount of vegetation, water etc.)

sediment chemistry first component measures clay vs sand (i.e., sedimentation
environment dynamics), the second (and further) the specific composition
characteristics of the clay, maybe related to origin of sediment

sagis2, 2005
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pollution the first component may measure degree of pollution, the second the
composition (relative ratios) of the pollution components, maybe connected to
the origin of pollution

sagis2, 2005



72

Use covariance or correlation?

User choice: IT MATTERS

• if variables should be given equal weight (importance) in the analysis, use
correlations.

• if differences in variances reflect the difference in importance of variables, use
covariances (e.g., grain size distrib.?)

• if in doubt, use correlations.

sagis2, 2005
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Curve data in Physical Geography

Example of curves:

• grain size distribution

• hyperspectral data (wavelength)

• depth: e.g. moisture depth profile, variables θ(zi)

• spatial series: space replicates are the variables, moments in time the observations

• time series: time replicates are variables, spatial locations the observations

The more densely sampled the curve, the more correlated the variables.

sagis2, 2005
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Factor Analysis

Goal:

What is the relation (correlatin) of m observed variables with p (p < m)
underlying, unobserved factors?

• Factor analysis: seeks from n original variables p underlying, unknown (and not
directly observable) variables, called common factors

• p is known, prior to analysis

sagis2, 2005
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• statistical model:

Xj =
p∑

r=1

ajrfr + εj

Xj j-th variable
ajr loading of the j-th variable on the r-th factor
fr th r-th factor
εj random variable, unique to Xj

• the set of m εj’s is called the unique factor

• Difference from regression analysis: the fr are unobservable

• Differences from PCA are subtle.

• PCA: from n original to n new axes: explorative, geometric

• FA: statistical model: observation = structure + noise.

sagis2, 2005
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• if p = m: FA ≈ PCA

sagis2, 2005
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How do we determine p?

• theory (not statistical theory, and neither physics!!)

• 2 or 3, ..., 7? (never more)

• experimenation ... which is not prior knowledge!

• number of factors for which eigenvalue > 1 ... ?

sagis2, 2005
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Factor rotation

• general idea: if p (p ≥ 2) factors explain 80% of the variance, then any
p orthogonal factors in this p-dimensional subspace explain this 80% of the
variability.

• PCA: first PC explains maximum variability

• rotated factors: first factor does not explain maximum variability

• why then rotate? Interpretability. Factors with loadings close to either 0 or
+1, −1 have the advantage that they are associated with certain (groups of)
variables, and not with others (varimax).

sagis2, 2005
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Nominal variables and cross tables

• Data: nominal (0, 1) or ordinal (1, 2, 3, ..., n)

• binary, e.g. present (1) or absent (0)

• nominal, e.g. sand (0), clay (1), peat (3)

• ordinal: low, intermediate, high

• Linear combination of variables: meaningless

Question: how do two nominal (or two sets of binary) variables relate to
each other?

sagis2, 2005
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Dune data set

• How do plant species relate to each other?

• How do plant species relate to environmental conditions?

• 30 species, 20 quadrats

a b c d e f g h i j k l m n o p q r s t
Belper 3 0 2 0 0 0 0 2 0 0 2 0 0 2 2 0 0 0 0 0
Empnig 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
Junbuf 0 3 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 4 2
Junart 0 0 0 3 0 0 4 0 0 3 0 0 4 0 0 4 0 0 0 0
Airpra 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 3 0 0
Elepal 0 0 0 8 0 0 4 0 0 5 0 0 0 0 0 4 4 0 0 0

sagis2, 2005
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Rumace 0 0 0 0 6 0 0 5 0 0 0 0 2 0 0 0 0 0 2 3
Viclat 0 0 0 0 0 0 0 0 0 0 1 2 0 1 0 0 0 0 0 0
Brarut 0 0 2 4 6 0 2 2 0 4 2 4 2 6 2 4 0 3 4 2
Ranfla 0 2 0 2 0 0 2 0 0 2 0 0 0 0 0 4 2 0 0 0
Cirarv 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Hyprad 0 0 0 0 0 0 0 0 2 0 0 2 0 0 0 0 0 5 0 0
Leoaut 5 2 2 0 3 0 3 3 2 2 3 5 2 5 2 2 2 6 2 3
Potpal 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 2 0 0 0
Poapra 4 2 4 0 3 4 4 2 1 0 4 4 4 3 5 0 0 0 0 4
Calcus 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 3 4 0 0 0
Tripra 0 0 0 0 5 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2
Trirep 5 2 1 0 5 0 2 2 0 1 6 3 3 2 2 0 6 2 3 2
Antodo 0 0 0 0 3 0 0 4 4 0 4 0 0 0 0 0 0 4 0 2
Salrep 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 5 0 3 0 0
Achmil 3 0 0 0 2 1 0 2 2 0 4 0 0 0 0 0 0 0 0 2
Poatri 7 9 5 2 4 2 4 6 0 0 4 0 5 0 6 0 0 0 4 5
Chealb 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Elyrep 4 0 4 0 0 4 0 4 0 0 0 0 6 0 4 0 0 0 0 0
Sagpro 0 2 5 0 0 0 2 0 0 0 0 2 2 0 0 0 0 3 4 0
Plalan 0 0 0 0 5 0 0 5 2 0 3 3 0 3 0 0 0 0 0 5

sagis2, 2005
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Agrsto 0 5 8 7 0 0 4 0 0 4 0 0 3 0 4 5 4 0 4 0
Lolper 5 0 5 0 6 7 4 2 0 0 6 7 2 2 6 0 0 0 0 6
Alogen 2 5 2 4 0 0 5 0 0 0 0 0 3 0 7 0 0 0 8 0
Brohor 4 0 3 0 0 0 0 2 0 0 4 0 0 0 0 0 0 0 0 2

sagis2, 2005
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Data reduction by groups

Idea:

a (single) grouping variable (nominal variable) may reflect a simple but
adequate structure, and may summarize the multivariate variability in a (large
part of the) data set. We may seek such a grouping variable (clustering),
or measure its strength or predict group membership given from all other
variables (discriminant analysis).

sagis2, 2005
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Discrimination and Clustering

• discriminant analysis is concerned with how well a set of variables can predict
a given grouping variable, given the grouping variable is known. ⇒ supervised:
grouping variable dependent, other variables independent

• cluster analysis is concerned with finding groups from an, a prior, ungrouped
data set. ⇒ unsupervised: no distinction between dependent/independent.

sagis2, 2005
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Discriminant functions

Discriminant function:

R = λ1X1 + λ2X2 + ... + λmXm = λ′X

(axis) with:
λi : loadings
R : scores (Rj score of observation j on Discr.fn.)

mean of A: Ā = [Ā1, Ā2, ..., Ām]′

RA = λ1Ā1 + ... + λmĀm = λ′Ā

RB = λ1B̄1 + ... + λmB̄m = λ′B̄

sagis2, 2005
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group means projected on the discriminant axis

Criteria for a good discriminant axis:

• RA −RB as large as possible

• Var(λ′A) and Var(λ′B) as small as possible

sagis2, 2005
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How to find the function?

Var(A) = Σ ⇒ Var(λ′A) = λ′Σλ

assume homoscedastic within-group covariances:

Var(A) = Var(B) = ... = Var(Z)

Problem: find λ such that
|RA −RB|

λ′Σλ
is maximized, given λ′λ = 1 (maximize not only |RA −RB|).

Solution (cmp. multiple regression):

λ = Σ−1(Ā− B̄)

sagis2, 2005
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Testing multivariate differences

Significance testing of the multivariate difference Ā− B̄

compare to two-sample t-test:

t =
x̄A − x̄B

sp

|t| > t(α, dF) : significant difference
|t| < t(α, dF) : non-significant difference

Multivariate:
D2 = (Ā− B̄)Σ−1(Ā− B̄)

If Σ = I: (Ā− B̄)′(Ā− B̄)
If Σ diagonal: scaling axis
Other cases: scaling + rotation

sagis2, 2005
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Assumptions for the test

(Davis:)

1. observations were taken at random from the population

2. probability of being in group A or B is equal

3. within-group distribution: mulitivariate normal

4. within-group covariances: identical (Σ)

5. no mis-classifications

sagis2, 2005



91

Wilk’s lambda

Λ =
|W |
|T |

W : within-class covariantie matrix
T : total covariantie matrix

Multivariate analogue of 1−R2

Λ: measures effectivity of the division in groups
0 : effective
1 : not effective

Suppose 1 row (or column) in W is 0 ⇒ |W | = 0 ⇒ perfect distinction |T | > 0

sagis2, 2005
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Canonical analysis

• Problem: more than two groups (A,B,C) or (A,B,...,Q)

• multiple axes are needed

Search for p axes that

• are independent (orthogonal) and

• as good as possible distinguish the groups

p ≤ m en p ≤ k − 1

eigenvector technique in the space of standardized differences.

sagis2, 2005
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Alternative approaches

• SVM, support vector machines

• ANN, artificial neural networks

• logistic regression

sagis2, 2005
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Cluster analysis

Clustering: search for a good division into groups, based on measured values.

• EDA

• data reduction

• allocation

Why not?

• prediction, mapping

• hypothesis testing

sagis2, 2005
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Clustering approaches

1. partitioning methods

2. arbitrary origin

3. hierarchical agglomerative

sagis2, 2005
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Problems

• when is a clustering a good clustering?

• how many groups should we distinguish?

sagis2, 2005
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Hierarchical methods

Find a measure of similarity (distance) between:

• objects and objects

• objects and clusters

• clusters and clusters

Where is the cluster?

• single linkage

• complete linkage

sagis2, 2005
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• weighted pair group

• centroid

sagis2, 2005
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Penalizing merges

How do we weight clusters

• relative to each other

• relative to other objects

Ward’s method: minimize error sum of squares: merge cluster A with size nA and
cluster B with size nB when

nAnB

nA + nB
d2

AB

is at minimum ⇒ prefers merging of object and/or small clusters

nAnB

nA + nB
d2

AB

sagis2, 2005
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given d2 = 1,
nAnB

nA + nB

nA, nB 1 2 5 10 20
1 0.50 0.67 0.83 0.91 0.95
2 0.67 1.00 1.43 1.67 1.82
5 0.83 1.43 2.50 3.33 4.00

10 0.91 1.67 3.33 5.00 6.67
20 0.95 1.82 4.00 6.67 10.00

sagis2, 2005
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Choices, choices, choices...

• similarity measure (distances)

• fusion criterium (when to merge)

Questions:

theory is there a theoretical foundation for the choices made?

statistical properties to what extent would another sample lead to the same
clustering? ⇒ sampling variability

optimality in which sense is the clustering found the best?

sagis2, 2005
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K-means clustering

Arbitrary origin methods –

Idea: start with k arbitrary origins and repeat:

1. calculate distances of each object to the k centres

2. assign each object to its nearest centre

3. shift the cluster centres to the mean of the objects assigned to it

until convergence (no change).

Risk: local minimum

sagis2, 2005
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k arbitrary origins: take the group means of a random partitioning of the objects
into k groups.

sagis2, 2005
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Integral criteria

When, instead of distances an integral criterion (e.g. Wilk’s Λ) is used: start with
an arbitrary partition, and repeat:

1. exchange n objects at random

2. accept the change if the criterion improved

(simulated annealing)

Risk: minimum is a local minimum

sagis2, 2005
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How many clusters

• theory (compare FA)

• clusters found can be interpreted

• 7 (like legend units on a map)

drawbacks:

• freedom of choice, no theory

• local optima

• no repercussions on degrees of freedom lost

sagis2, 2005
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Spatial interpolation:
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1−nearest neighbour (‘‘Thiessen polygons’’)
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first order linear trend
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Inverse distance weighted; idp = 2
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Ordinary point kriging
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Universal (external drift) point kriging
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Spatial statistics

“Statistics for spatial data” (Noel Cressie, 1993):

• point pattern data: a pattern where the actual spatial locations are of interest
(e.g. are they random or clustered – diseases, crime scenes)

• lattice data: attributes are measured on regions that collectively form the study
area, e.g. postal code regions, NUTS regions, image pixels

• geostatistical data: a variable has been sampled on some set of locations; the
interest is the value of that variable on any set of locations (e.g. pollution, gold
concentration)

sagis2, 2005
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Primary data

• measured attribute

• spatial location (x, y; z?), locations projected

• other attributes ...

sagis2, 2005
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GIS data base

• x and y coordinates of prediction locations

• land use, soil type

• elevation (DEM)

• distance to key features (pollution/diffusion source (point/line) or sink; breeding
colony, ...)

• remotely sensed images

sagis2, 2005
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Simple approaches to spatial prediction

• linear regression:

? using an “external” predictor
? using coordinates as predictors
? global, or local?
? weighted, using distance?

• categorical predictors: spatial ANOVA

• inverse distance weighted

sagis2, 2005
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Linear regression as spatial predictor

Examples:

• > lm(log(zinc)~sqrt(dist), meuse)

• rainfall and orography (altitude)

• temperature and altitude, or latitude (scale!)

• log(pollution) and distance to source, measured along flow path

sagis2, 2005
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Trend surface interpolation

Polynomials in x, y (or x, y, z):

Z(x, y) = β0 + β1x + β2y + e(x, y)

Z(x, y) = β0 + β1x + β2y + β3x
2 + β4y

2 + β5xy + e(x, y)

coefficient vector β is globally constant:

• allows testing, etc.

• testing assumes... independence

sagis2, 2005
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Local trend surface interpolation

For predicting Z(x0, y0), given the model

Z(x, y) = β0 + β1x + β2y + e(x, y)

pick only data in a local neighbourhood around (x0, y0)

How to define a neighbourhood?

• distance

• number of nearest observations (n must be larger than p [= nrows(β)]!)

• combined criteria

Problem: surface is discontinuous; solution: use loess, splines

sagis2, 2005
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Categorical predictors: ANOVA
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Inverse distance interpolation

Use a weighted average:

Ẑ(s0) =
n∑

i=1

λiZ(si)

with s0 = {x0, y0}, or s0 = {x0, y0, depth0} weights inverse proportional to power
p of distance:

λi =
|si − s0|−p∑n
i=1 |si − s0|−p

• power p: tuning parameter

• if for some i, |si − s0| = 0, then λi = 1 and other weights become zero

• ⇒ exact interpolator

sagis2, 2005
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inverse distance power: 2, .5, 10

sagis2, 2005
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GWR - geographically weighted regression

e.g. log(zinc) ~ sqrt(dist); prediction of Z(s0)

• apply in a local neighbourhood

• apply weights, inverse proportional to |s0 − si|; functions:

? Gaussian
? Bi-cubic
? span?

• compare to loess:

? loess: regression and weighting in covariates,
? GWR: regression in covariates, weighting in geographic distances

sagis2, 2005



128

• books by R.S. Fotheringham and co-workers

sagis2, 2005
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Random variables and random functions

A random variable (RV) Z is a variable whose outcome is subject to chance. A
continuous RV Z has a distribution function: FZ(x) = Pr(Z ≤ x) which can be
written as

FZ(x) =
∫ x

−∞
fZ(u)du

with fZ(x) ≥ 0, and fZ(x) (defined as) the probability density function.

Expectation: E(Z) =
∫∞
−∞ xf(x)dx

Variance: Var(Z) = E[(Z − E(Z))2]

Covariance: Cov(Y, Z) = E[(Y − E(Y ))(Z − E(Z))]

A set of random variables, Z(s), s ∈ {s1, s2, ..., sn} is called a random function

Var(λ1Z1 + λ2Z2) = λ2
1Var(Z1) + λ2

2Var(Z2) + 2λ1λ2Cov(Z1, Z2)

sagis2, 2005
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For vector Z = [Z1 Z2 ... Zn]′: Var(λ′Z) = λ′Var(Z)λ

sagis2, 2005
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Best linear prediction (a.k.a. simple kriging)

Suppose we know µ, and Z(s) = µ + e(s). The linear predictor

Ẑ(s0) =
n∑

i=1

λiZ(si) = λ′Z

has variance

Var(Z(s0)− Ẑ(s0)) = Var(Z(s0)− λ′Z)

which can be written as

Var(Z(s0)− λ′Z) = Var(Z(s0)) + λ′Var(Z)λ− 2λ′Cov(Z(s0), Z)

so we need all variances of Z(s0) (scalar), of Z (matrix) and covariances of Z(s0)
and Z (vector).

sagis2, 2005
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Next, find weights such that Var(Z(s0)− Ẑ(s0)) is minimized, and we have the
best (minimum variance) linear predictor.

sagis2, 2005
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Best linear prediction weights

Let V = Var(Z) (n× n) and v = Cov(Z(s0), Z) (n× 1), and scalar
Var(Z(s0)) = σ2

0.

Expected squared prediction error E(Z(s0)− Ẑ(s0))2 = σ2(s0)

Replace Z with Z − µ (assume µ = 0)

σ2(s0) = E(Z(s0)− λ′Z)2 = E(Z(s0))2 − 2λ′E(Z(s0)Z) + λ′E(ZZ ′)λ

= Var(Z(s0))− 2λ′Cov(Z(s0), Z) + λ′Var(Z)λ = σ2
0 − 2λ′v + λ′V λ

Choose λ such that δσ2(s0)
δλ = −2v + 2λ′V = 0

λ′ = vV −1

BLP: Ẑ(s0) = µ + v′V −1(Z − µ) σ2(s0) = σ2
0 − v′V −1v

sagis2, 2005
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Spatial Prediction

o

+ +

+

Z(s1)=5 Z(s2)=3.6

Z(s3)=2.8

Z(s0)=?
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Stationarity 1

Given prediction location s0, and data locations s1 and s2, we need: Var(Z(s0)),
Var(Z(s1)), Var(Z(s2)), Cov(Z(s0), Z(s1)), Cov(Z(s0), Z(s2)),
Cov(Z(s1), Z(s2)).

How to get these covariances?

• given a single measurement z(s1), we can not infer Var(Z(s1))

• given two measurements z(s1) and z(s2), we can never infer Cov(Z(s1), Z(s2))

• geven a time series at s1 and s2, we can infer Cov(Z(s1), Z(s2)), but how to
infer Cov(Z(s0), Z(s1)) and Cov(Z(s0), Z(s2))?

Solution: assume stationarity.

sagis2, 2005
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Stationarity 2

Stationarity of the

mean E(Z(s1)) = E(Z(s2)) = ... = m

variance Var(Z(s1)) = Var(Z(s2)) = ... = σ2
0

covariance Cov(Z(s1), Z(s2)) = Cov(Z(s3), Z(s4)) if s1 − s2 = s3 − s4:
distance/direction dependence

Second order stationarity: Cov(Z(s), Z(s + h)) = C(h)

which implies: Cov(Z(s), Z(s)) = Var(Z(s)) = C(0)

The function C(h) is the covariogram of the random function Z(s)

sagis2, 2005
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From covariance to semivariance

Covariance: Cov(Z(s), Z(s + h)) = C(h) = E[(Z(s)−m)(Z(s + h)−m)]

Semivariance: γ(h) = 1
2E[(Z(s)− Z(s + h))2]

E[(Z(s)− Z(s + h))2] = E[(Z(s))2 + (Z(s + h))2 − 2Z(s)Z(s + h)]

[Assume m = 0]:

E[(Z(s)− Z(s + h))2] = E[(Z(s))2] + E[(Z(sh))2]− 2E[Z(s)Z(s + h)] =
2Var(Z(s))− 2Cov(Z(s), Z(s + h)) = 2C(0)− 2C(h)

γ(h) = C(0)− C(h)

γ(h) is the semivariogram of Z(s).

sagis2, 2005
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The Variogram
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The Variogram

• the central tool to geostatistics

• like a mean squares (variance) in analysis of variance, like a t to a t-test

• measures spatial correlation

• subject to debate: it involves modelling

• synonymous to semivariogram, but

• semivariance is not synonymous to variance

sagis2, 2005
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Variogram: how to compute

average squared differences:

γ(h̃) =
1

2Nh

Nh∑
i=1

(Z(si)− Z(si + h))2 h ∈ h̃

• divide by 2Nh:

? if finite, γ(∞) = σ2

? semivariance

• if data are not gridded, group Nh pairs si, si + h for which h ∈ h̃, h̃ = [h1, h2]

• choose about 10-25 distance intervals h̃, from length 0 to about on third of the
area size

sagis2, 2005
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• “plot” h̃ at the average value of all h ∈ h̃

sagis2, 2005
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Variogram: terminology

sagis2, 2005
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gstat coding (R):

> vgm(psill = 0.6, model = "Sph", range = 900, nugget = 0.06)
model psill range

1 Nug 0.06 0
2 Sph 0.60 900
> vgm(0.6, "Sph", 900, 0.06)
model psill range

1 Nug 0.06 0
2 Sph 0.60 900

sagis2, 2005
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Why prefer the variogram over the covariogram

Covariance: Cov(Z(s), Z(s + h)) = C(h) = E[(Z(s)−m)(Z(s + h)−m)]

Semivariance: γ(h) = 1
2E[(Z(s)− Z(s + h))2]

γ(h) = C(0)− C(h)

• tradition

• C(h) needs (an estimate of) m, γ(h) does not

• C(0) may not exist (∞!), when γ(h) does (e.g., Brownian motion)

• software wants γ(h).

sagis2, 2005
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Ordinary kriging

• Simple kriging: Z(s) = µ + e(s), µ known

• Ordinary kriging: Z(s) = m + e(s), m unknown

• SK: linear predictor λ′Z with λ such that σ2(s0) = E(Z(s0)−λ′Z)2 is minimized

• OK: linear predictor λ′Z with λ such that it

1. has minimum variance σ2(s0) = E(Z(s0)− λ′Z)2, and
2. is unbiased E(λ′Z) = m

• second constraint:
∑n

i=1 λi = 1, weights sum to one.

sagis2, 2005
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• BLUP: Ẑ(s0) = m̂ + vV −1(Z − m̂)
with m̂ = (1′V −11)−11′V −1Z, and
σ2(s0) = σ2

0 − v′V −1v + (1− 1′V −1v)′(1′V −11)−1(1− 1′V −1v)

sagis2, 2005
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gstat: status of project

• open source (GPL) project, http://www.gstat.org/, started in 1992

• gstat (or gstat.exe) is a stand-alone binary that

? input: e.g. data (e.g. through GDAL) and uses gnuplot to show variograms
? reads (ascii) data and (usually) writes maps.

• gstatw.exe: gstat+GUI; stand-alone; very limited functionality, little
development expected

• gstat library: an S (S-PLUS or R) library that manipulates data in an S data
environment; developmented; successor or gstat stand-alone

• 30.000 lines of ansi-c code, 1500 lines of S code

sagis2, 2005

http://www.gstat.org/


149

• gstat and gstat S library are fully documented

• recent: gstat S library depends on sp

• upcoming: “Applied Spatial Data Analysis with R”, by R Bivand & E Pebesma

sagis2, 2005
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Kriging in a local neighbourhood

OK: Z(s) = m + e(s)

• instead of assuming m globally constant, we can assume it is (only) constant in
a local neighbourhood around s0 (expressed in distance, or number of nearest
points)

• local stationarity of mean

• for each neighbourhood, m is re-estimated

• the smaller the neigbhourhood, the more it costs

• OK, neighbourhood size 1: 1-nearest neighbour predictor

sagis2, 2005
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• OK, neighbourhood size 0: missing value

• SK, neighbourhood size 1: prediction between nearest neighbour and µ

• OK, neighbourhood size 0: prediction is µ

• large neighbourhood (n � 50): prediction is practically identical to kriging in
global neighbourhood (SK, OK; not UK)

• if we have many data (e.g. n � 1000), kriging in global neighbourhood
becomes cumbersome because of computation of V −1 ⇒ kriging in a large,
local neighbourhood may be much faster

sagis2, 2005
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Support: point kriging

• measurements have a certain support: the physical (spatial, temporal) “size” of
the sample that was measured.

• we call this the point support, although strictly speaking, unlike points, point
support is larger than zero.

• the larger the support, the lower the variability

? compare hourly, daily averaged, and yearly averaged temperatures
? compare gauge rainfall, rainfall averaged over 1 km2, or rainfall averaged over

100 km2.
? not an easy concept when using bulk sampling, soil mixture samples etc.

sagis2, 2005



153

• predictions usually refer to estimates for quantities that would have been
measured on the same support as that of the measurements (point support
prediction; point kriging)

sagis2, 2005
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Support: point or block kriging

• predictions of mean values for areas, larger than the point support is called block
kriging; predict Z(B0) = |B0|−1

∫
B0

Z(u)du

• the larger the support of the block, the smaller the prediction errors that come
with it

• how large blocks should we choose? Some ideas:

? trade-off: larger blocks have smaller prediction errors, but less spatial
resolution (in the end, the block covers the study area)

? is legislation related to a target support?
? the size of model grid cells
? the size of units that can e.g. be mined (ore) or excavated (polluted soil)

sagis2, 2005
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? related to monitoring network density: how much of the spatial pattern is
lost?

sagis2, 2005
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Isotropy and anisotropy

• spatial correlation may depend on direction

• usually it will, but to what extent?

• large samples are needed to explore this

sagis2, 2005




