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Abstract

Time in geographic information systems has been a research theme for more
than two decades, resulting in comprehensive theoretical work, many re-
search prototypes and several working solutions. However, none of the avail-
able solutions provides the ability to manage, analyze, process and visualize
large environmental spatio-temporal datasets and the investigation and as-
sessment of temporal relationships between them. We present in this paper
a freely available field based temporal GIS (TGRASS) that fulfills these re-
quirements. Our approach is based on the integration of time in the open
source Geographic Resources Analysis Support System (GRASS). We intro-
duce the concept of a space time dataset that is defined as a collection of
time stamped raster, voxel or vector data. A dedicated set of spatio-temporal
tools was implemented to manage, process and analyze space time datasets
and their temporal and spatial relationships. We demonstrate the tempo-
ral GIS and environmental modeling capabilities of TGRASS by analyzing a
multi-decadal European climate dataset.
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1. Introduction

The integration of time in geographic information systems has been an
ongoing research theme for 25 years. The book Time in Geographic In-
formation Systems (Langran, 1992) marked a first milestone in temporal
GIS. Since then, the literature about temporal GIS concepts and related
topics like spatio-temporal database models has grown rapidly. Compre-
hensive overviews about spatio-temporal database models and temporal GIS
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approaches are available in Pelekis et al. (2004), O’Sullivan (2005), Ott and
Swiaczny (2001).

The temporal GIS approach for environmental modeling that we present
in this study focuses on the field based view on geographical data. We
follow in our approach the field definition of Galton (2001): A spatial field
is a mapping from spatial locations to values that may be any kind of data
structures. The field provides a coverage of space using irreducible minimal
regions, for example represented as a pixel. A mapping that assigns a value
to each location at each time is called a spatio-temporal field. The distinction
between an object based and field based view of geographic information is
an important concept in geoinformation science. A good overview about this
distinction with comprehensive theoretical work is given in Galton (2001,
2004), Goodchild and Gopal (1989), Goodchild (1992).

Field based temporal GIS has been a key technology for integrated assess-
ment modeling that is common in the climate change research (Christakos
et al., 2001). With the availability of high resolution environmental data sets
with continental to global extent containing continuous field measurements
and output data from physical, chemical or statistical models, a strong need
has emerged to efficiently manage, analyze, process and visualize such big
data.

Several spatio-temporal environmental modeling software systems and
temporal GIS solutions are available that include STempo (Peuquet and
Hardisty, 2010), GeoViz Toolkit (Hardisty, 2013), PCRaster (PCRaster team,
2012), TerraME (de Senna Carneiro et al., 2013), the R environment for sta-
tistical computing (R) (R Development Core Team, 2012), Terralib (Camara
et al., 2008), Climate Data Operators (CDO) (Schulzweida, 2013), Arc Hy-
dro Groundwater (Aquaveo LLC, 2013) and STEMgis (Discovery Software
Ltd., 2013). Most of these solutions have a dedicated purpose that is spatio-
temporal visualization, statistical analysis, water management, raster time
series processing or climate data analysis. Yuan (2009) stated that most
temporal GIS technology developed are still in the research phase or have
an emphasis on mapping. Exceptions are the Terraliib and the R environ-
ment. Because of its modular approach the R environment can be enhanced
with several spatial, temporal and spatio-temporal packages. For example
the spacetime package (Pebesma, 2012) in conjunction with packages sp, xts,
rgeos and raster transform R into a feature rich spatio-temporal GIS en-
vironment with modeling, statistical analysis and visualization capabilities.



However, to process massive datasets that do not fit into the main memory?!,
R still requires a spatio-temporal database backend and is therefore not well
suited yet for large-scale field based spatio-temporal modeling. The main aim
of the Terraliib class and functions library is to enable the development of
new generation GIS applications. Terraliib implements the basic infrastruc-
ture for spatio-temporal analysis and modeling and supports several different
spatio-temporal data types (events, mobile objects, and evolving regions)
(Camara et al., 2008). On top of Terralib, TerraME de Senna Carneiro
et al. (2013) offers the capability to model nature-society interactions, using
multi-scale concepts.

None of the available solutions provide large-scale field based, spatio-
temporal environmental modeling capabilities that are based on a compre-
hensive set of spatio-temporal GIS management, processing and analysis
tools. With the exception of the R environment available solutions do not
support the analysis of relationships between spatio-temporal fields that are
used in environmental modeling.

The aim of this paper is to describe a field based temporal GIS, based on
the Geographic Resources Analysis Support System (GRASS), to efficiently
manage, visualize, process, model and analyze large spatio-temporal fields
and their spatio-temporal relationships. An additional aim is the interoper-
ability between our temporal GIS (TGRASS) and the spatio-temporal mod-
eling and analyzing environments R and CDO as well as ParaView (Kitware
Inc., 2013a). The management, analysis, modeling, processing and visual-
ization capabilities of our approach are demonstrated by analyzing a large
climate dataset provided by the European Climate Assessment and Dataset
project (ECA&D).

2. Related work

The temporal GIS approach presented in this paper follows the field based
world view using two and three spatial and one temporal dimension as defined
in Galton (2004). A comprehensive field based temporal GIS must support
different kind of fields that are common in environmental modeling. Common
spatial fields may have two or three dimensions. Such spatial fields are regular
gridded, irregular gridded or of object type. A continuous field that maps
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location to spatial objects is defined as an Object field (Cova et al., 2002).
Object fields are introduced in Galton (2001) and formulated more generally
in Cova et al. (2002). Regular gridded fields can be represented as raster (2D)
or voxel (3D) data. Irregular gridded fields can be represented as two or three
dimensional point clouds, triangulated irregular networks (TIN) or Voronoi
diagrams. These kind of fields are a specific form of object fields since they
are built upon vector features like points, lines and polygons. Object fields
may also contain spatial objects representing for example a watershed or a
viewshed.

In our study the spatio-temporal fields are organized using time stamped
spatial fields. This is commonly known as a snapshot approach. It has been
utilized in several temporal GIS implementations because of its simplicity
and the ability to extend existing spatial GIS that are layer based. Following
the snapshot approach to integrate time in a spatial GIS, time stamps are
assigned to spatial fields. Hence all cells (2D or 3D) or objects in a spatial
field share the same time stamp. We will use the term snapshot and time
stamped spatial field interchangeably in our paper. The concept of space
time datasets was introduced to efficiently manage time stamped spatial
fields. Space time datasets represent spatio-temporal fields in TGRASS.
They are defined as a collection of time stamped spatial fields (snapshots)
from which they derive their spatial and temporal extent. The common
snapshot approach was extended in TGRASS so that each time stamped
spatial field can have a different spatial and temporal extent. Temporal
as well as spatial relationship computation between time stamped spatial
fields is supported to allow the investigation of spatio-temporal interactions
between them.

Space time cubes were introduced with two spatial (z,y) and one tempo-
ral (¢) dimension. Space time cubes are often utilized to analyze and visualize
space time paths resulting from the movement of individuals or objects in
space and time. The space time cubes in TGRASS represent spatio-temporal
fields, build upon three dimensional pixels (voxels). Forer (1998) denoted
these kind of voxels as taxels to emphasize the specific nature of the time
dimension. We denote this three dimensional spatio-temporal field represen-
tation as space time voxel cube. It can be seen as a special case of a space
time dataset with restricted properties. The benefit of space time voxel cubes
is the availability of several tools in GRASS that can perform spatio-temporal
operations on them, for instance spatio-temporal map calculation as defined
in Jeremy et al. (2005). Mitasova et al. (2011) utilized the voxel analysis
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capabilities of GRASS to analyze time series data.

2.1. Time in space time datasets

Several different models of time in geographic information systems have
been developed. Models of time can be linear or cyclic, discrete or continuous,
supporting branching or multiple perspectives. A comprehensive overview
about different times in GIS is given in Frank (1998).

A field based temporal GIS must represent how fields are measured in
time. Temperature for example is measured at time instances but the mean
temperature is computed for time intervals. Precipitation and Greenhouse
Gas (GHG) emissions are measured in time intervals. The system must be
aware of calendar time to manage and analyze interaction between measured
fields. Environmental models may use time for simulation with no fixed
reference, hence relative time must be supported.

TGRASS uses the concept of linear, discrete time represented by time
instances and time intervals. Time intervals and time instances represent
the time stamps of spatial fields. The interval time model supports the
occurrence of gaps between intervals. Time intervals are allowed to overlap
or contain each other and can contain time instances. Time intervals can be
unequally spaced. Time is measured using the Gregorian calendar time, also
called absolute time, conform to ISO 86012 and as relative time defined by
an integer and a unit of type year, month, day, hour, minute or second. The
smallest supported temporal granule is a second. The definition of absolute
and relative time follows the temporal database concepts collected in Dyreson
et al. (1994).

Time intervals in our approach are designed to easily detect gaps. Inter-
vals consist of a start time instance and an end time instance. The end time
is not part of the time interval and represents the start time of a potential
successor. Hence the time interval is a left closed right open interval. In case
the end time of an interval is the start time of a second interval no gaps exist
between them. Space time voxel cubes support only non-overlapping time
intervals.

2.1.1. Temporal granularity
An important concept in temporal databases is the temporal granularity.
A glossary about temporal granularity is available in Bettini et al. (1998).

2http://en.wikipedia.org/wiki/IS0_8601



The temporal granularity of a space time dataset is defined in TGRASS
as the largest common divider granule of time intervals and gaps between
intervals or instances from all time stamped spatial fields that are collected
in a space time dataset. It is represented as a number of seconds, minutes,
hours, days, weeks, months or years. The temporal granularity is computed
automatically for each space time dataset.

2.1.2. Temporal topology

The temporal topology describes temporal relations between time stamps
represented by interval time or time instances. Several algorithms in TGRASS
need to check the temporal topology of space time datasets for validity. The
computation of the temporal topology of a space time dataset is based on
temporal logic introduced in Allen (1983) shown in Figure 1. A valid tem-
poral topology allows only the following temporal relationships: follows/pre-
cedes and after/before.
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B in relation to A
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Figure 1: Temporal relations between time intervals (Allen, 1983)

2.1.3. Temporal sampling

The investigation of spatio-temporal relations between space time datasets
is a core concept in our temporal GIS approach. Relations between space
time datasets are based on temporal relationships between time stamped spa-
tial fields. To compute temporal relationships a simplified approach based on
Allen (1983) is used, shown in Figure 2. We have chosen a different naming
scheme to aggregate several temporal relations into single ones:

e start includes equivalent, during, starts, started, finishes and overlaps.
This relationship can occur when the start time of a time interval or a
time instance is located in a second time interval.



e overlap includes overlaps and overlapped.
e contain includes contains, started and finished.

e during includes during, starts and finishes.

In TGRASS we denote the process to identify temporally related spatial fields
of two space time datasets as temporal sampling. The sampling methods are
described in Figure 3.

A in relation to B B in relation to A
A —
B equivalent equivalent
A —
B overlap overlap
A —
B —
A — . .
B during contain
—
A —
B —
A —
B follows precedes

Figure 2: Simplified temporal relationship scheme for space time dataset
sampling.
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Figure 3: Methods of space time dataset sampling. Visualized are the tem-
poral relations from time stamped spatial fields A and B to S. Hence Al
starts in S1, B3 is during S3, B4 equals S4, B1 overlaps S1.



2.1.4. States, Events and Processes

Multiple concepts of states, events and processes have been developed.
In our approach a single snapshot represents a specific state of a part of the
world at a discrete time instance or in a time interval. Langran (1992) stated
that changes between states are defined as events. An event transforms one
state into the next, hence change can not be represented using a snapshot
approach. The Event-Based Spatiotemporal Data Model (ESTDM) (Peuquet
and Duan, 1995) uses time as an organizational basis to store event based
changes. Sparse raster structures are used to represent the differences to a
base raster layer that defines the state at the beginning of the time series.
Worboys (1998) made the distinction that field based approaches allow the
definition of processes and the object based approach allows the definition
of events. Yuan (2001) claims that processes are a sequence of dynamically
related states and events are the occurrence of something significant such as a
flood, a storm events or a wildfire. Events may consists of multiple processes
and processes may be part of different events.

TGRASS supports the detection of events in spatio-temporal fields. Tem-
porally related snapshots can be identified and differences between them can
be computed. TGRASS does not use a specific sparse data structure to store
differences between spatial fields. The computational effort to detect differ-
ences is much higher than in the ESTDM approach and the data storage is
not as efficient. However, TGRASS supports in contrast to the ESTDM ap-
proach the computation of differences and the storage of 2D and 3D gridded
spatial fields and fields of spatial objects. With the introduction of space time
datasets in TGRASS we are able to efficiently manage and analyze processes
that were defined by Yuan (2001).

2.2. GRASS GIS

The spatial GIS to integrate time must support spatial fields that are
used in environmental modeling. In addition spatial querying, analysis and
processing tools must be available. The design of the spatial GIS must pro-
vide a well documented Application Programming Interface (API) to enable
a strong® integration of time. Reusing existing spatial analysis tools and algo-
rithms in spatio-temporal work flows must be supported to avoid redundant

3Strong in the meaning that functionality of the temporal GIS framework can be inte-
grated in the core functionality of the chosen GIS



implementations.

We have chosen the Geographic Resources Analysis Support System GRASS
for time integration. GRASS is an Open Source Geographical Information
System that supports all needed spatial and integration specific requirements.
Neteler et al. (2012) stated:

Due to the scientific background of many of its contributors, and
its historical background, GRASS is well equipped for environ-
mental modeling, and at the same time it retains the usefulness
for a multi-purpose GIS environment.

In addition to the GRASS GIS website* the text book by Neteler and Mi-
tasova (2008) provides detailed information about this open source GIS.
GRASS GIS has been utilized in many spatio-temporal environmental scien-
tific applications (Mitasova et al., 1995, 2011, Neteler, 2005, 2010, Zorer et al.,
2011). A comprehensive overview about GRASS GIS and its application in
environmental modeling is available in Neteler et al. (2012).

3. The integration of time in GRASS GIS

3.1. Implementation

According to (Langran, 1992, page 5) the fundamental functions of a
temporal GIS are:

e [nventory: Storing a complete description of the study area, and ac-
count for changes in both the physical world and computer storage.

e Analysis: Explain, exploit, or forecast the components contained by
the process at work in a region.

e Update: Superseding outdated information with current information.

e Quality control: Evaluate whether new data are logically consistent
with previous versions and states.

e Scheduling: Identifying or anticipating threshold database states, which
trigger predefined system responses.

‘http://grass.osgeo.org



e Display: Generating a static or dynamic map, or a tabular summary,
of temporal processes at work in region.

Except for scheduling, all the requirements of a temporal GIS specified above
were implemented with a focus on inventory, analysis and quality. Besides of
the environmental modeling requirements, design rules to integrate time in
GRASS GIS were considered. An important integration aspect was to avoid
the break of existing functionality. To avoid redundancy existing modules
and libraries were reused for spatio-temporal field processing. Our imple-
mentation follows the GRASS GIS design rule Create small and fast modules
for a specific purpose and combine them to manage complex tasks.

A single spatial field is usually denoted as a layer in common GIS. How-
ever, we will use the GRASS GIS specific notation raster map, 3D raster map
and vector map in this paper. Two and three dimensional regular gridded
fields are referred as raster and 3D raster maps. Irregular gridded spatial
fields and object fields are referred as vector maps.

The integration of time in GRASS GIS was based on the combination
of a new dedicated Python library that implements the temporal API, the
definition of the temporal database structure using SQL statements, and a set
of new Python modules, see Figure 4. The resulting temporal geographical
information system is called TGRASS in our paper to distinguish between the
temporal and non-temporal version of GRASS GIS. We will use the notation
TGRASS and our temporal GIS interchangeably in our paper.

Spatio-Temporal
GIS Modules

?
v v

Temporal GRASS Modules
GIS Python API GRASS Python API

Temporal

Database -
Defintion Temporal Spatial Attribute

Database Database Database

Figure 4: TGRASS API and modules
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To assure spatial database compatibility of TGRASS with existing GRASS
databases, a dual storage concept was implemented. The spatial and at-
tribute data storage concept of GRASS was not modified. All spatial data
is stored in the GRASS spatial database using the existing GRASS specific
storage format. Vector attributes are stored in SQL databases. In addition
a dedicated SQL database (temporal database) was introduced in TGRASS
to store only temporal GIS related metadata.

3.1.1. Adding time stamps to maps

The first step to implement our temporal GIS was to integrate time stamp
support for raster, 3D raster and vector maps and therefore the design of the
temporal database. The existing time stamp mechanism for raster and 3D
raster maps was reused and extended to support vector maps. In TGRASS,
maps® can be registered and unregistered in the temporal database. When
a map is registered, its unique id, the spatio-temporal extent and map type
specific metadata are stored in the temporal database. This concept leads to
redundant storage, since this data is stored in the GRASS spatial database
as well. The benefit of this storage scheme is that it allows complex SQL
queries using the spatio-temporal extent and metadata information for map
selection. It was not considered to choose a non-redundant storage scheme,
since that would require a rewrite of the GRASS core library functionality.

3.1.2. Space Time Datasets
The introduction of three map type specific spatio-temporal data types
in TGRASS was the second integration step:

e Space Time Raster Datasets (STRDS) represent collections of time
stamped raster maps

e Space Time 3D Raster Datasets (STR3DS) represent collections of time
stamped 3D raster maps

e Space Time Vector Datasets (STVDS) represent collections of time
stamped vector maps

Space time datasets (STDS) represent spatio-temporal fields in TGRASS.
They are stored as table structures in the temporal database and can be

SMaps of type raster, 3D raster and vector.
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created, updated and deleted. Raster, 3D raster and vector maps can be
registered in several different space time datasets at the same time. The
spatio-temporal extent as well as the granularity and the map type specific
metadata of space time datasets is automatically computed from registered
time stamped maps. The correctness of time stamps and the temporal topo-
logical validity is checked automatically. Cross referencing between time
stamped maps and space time datasets was implemented to assure temporal
data integrity and consistency.

3.1.3. Space Time Voxel Cubes

The third step was the introduction of time as the third dimension in
the 3D raster GRASS C library to enable the support for space time voxel
cubes. Space time voxel cubes support the same temporal types and time
stamps as space time raster datasets. Space time raster datasets with valid
temporal topology and interval time can be converted into space time voxel
cubes. Every space time voxel cube can be converted into a space time raster
dataset. The conversion is performed without information loss. Space time
voxel cubes have equidistant sample resolutions for each axis (x,y,t). The
unit of the spatial axis depends on the projection of the GRASS location.
The unit of the temporal axis depends on the chosen temporal unit that can
be of type years, months, days, hours, minutes or seconds. The axis specific
spatial resolution is stored as double precision floating point values. In case of
absolute time, the temporal resolution is stored as years, months or days with
fractions of days representing hours, minutes and seconds relative to the date
Jan. 1. 1900 00:00:00 UTC. This assures the correct temporal alignment of
space time voxel cubes using the same temporal unit but different start or
end times. All existing 3D raster modules can be used to process space time
voxel cubes. This includes modules for cross section computation, uni-variate
and zonal statistical analysis, 3D mask creation and 3D point sampling.
Map calculation that allows spatio-temporal algebraic operations described
in Jeremy et al. (2005) is supported as well. A limitation is that 3D map
calculation is only allowed between space time cubes with the same temporal
unit.

3.1.4. Spatio-temporal modules

In the last step temporal and spatio-temporal modules were implemented
to provide spatio-temporal management, querying, analysis, processing, ex-
port, import and conversion functionality. These modules were designed to
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accept space time datasets as input for processing among maps of different
type, numerical and textual parameter and files. Usually new space time
datasets or textual contents are created as output. The modular concept
of TGRASS allows nesting of temporal and spatial modules. Hence, the
result of a spatio-temporal query created with a temporal module can be
used as input parameter for spatial processing modules. The naming con-

cept of TGRASS modules follows the established module naming convention
of GRASS GIS:

e ¢ * prefiz: Modules for temporal analysis and database management
e t.rast.* prefiz: Modules processing space time raster datasets
e t.rast3d.* prefix Modules processing space time 3D raster datasets

e t.vect. ™ prefix: Modules processing space time vector datasets

An overview of implemented modules is given in Appendix A.

3.1.5. Visualization and data handling

TGRASS supports the direct visualization of raster time series. To cre-
ate sophisticated animations including several space time raster and vector
datasets, the display modules® can be utilized in conjunction with the tem-
poral sampling module ¢.sample. Based on our temporal Python library new
visualization modules have been implemented by Kratochvilova (2013):

e g.gui.animate to visualize and animate multiple space time raster and
vector datasets

e g.qui.timeline to visually analyze the temporal topology of multiple
space time raster and vector datasets

TGRASS was designed to handle and store high resolution, continental
scale data represented as maps and space time datasets. It was success-
fully tested using different environmental datasets containing up to 150.000
maps with hourly, daily, monthly and yearly temporal resolution. Space time
datasets that handle more than 20.000 maps were successfully used in spatio-
temporal processing like aggregation and sampling. Limiting factors are the
number and size of files and directories the used file system can manage and
the number and size of tables the temporal database can handle.

6d.mon, d.rast, d.vect, d.title, d.text, d.legend and many more
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3.2. Interoperability

Interoperability of a temporal GIS with existing spatio-temporal model-
ing, analysis and visualization applications multiplies its usefulness. Inter-
operability avoids redundant implementation of the same functionality and
allows the user to combine different applications to perform complex tasks a
single application is not capable of. Export interfaces for space time datasets
and statistical spatio-temporal data to the following open source applications
are provided:

e R environment for statistical computing (R)
e Climate Data Operator (CDO)
e ParaView

The statistical analysis spatio-temporal modules of TGRASS support out-
put formats that can be directly imported in R for further analysis. With
the introduction of space time voxel cubes a new export module to create
NetCDF files was implemented. This export module r3.out.netedf supports
the export of spatial volumes and space time voxel cubes as NetCDF files.
Comprehensive projection information as well as data and axis descriptions
are provided in the NetCDF file, following the Climate and Forcast (CF)
Conventions version 1.67. This assures seamless processing, analysis and vi-
sualization of space time voxel cubes in R, CDO and ParaView. Additionally,
the export of space time raster datasets as ParaView time series data using
the legacy VTK (Kitware Inc., 2013b) format is provided.

4. Software availability

The source code of our implementation is licensed under the Gnu Public
License (GPL) version 2 and is part of GRASS GIS 7. It is available via the
software versioning and revision control system subversion® starting from
GRASS GIS 7 revision 52369. The source code can be inspected using the
GRASS GIS online source code browser?. Detailed compiling and installation

"http://cf-pcmdi.llnl.gov/documents/cf-conventions/1.6/
cf-conventions-multi.html

8http://trac.osgeo.org/grass/wiki/DownloadSource#GRASS7

Yhttp://trac.osgeo.org/grass/browser/grass/trunk
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instructions as well as needed requirements are available at the GRASS GIS
web site'®. The author of TGRASS is Séren Gebbert.

5. Validation and verification

The functionality of the temporal GIS Python library was validated using
automated Python tests that are directly integrated with the library source
code. Additionally, more than 100 tests to validate the temporal and spatio-
temporal modules were implemented using shell scripts.

The seasonal and yearly mean temperatures from 1950 - 2011 of the tem-
perate climate zone of the European Union and Turkey were analyzed, to ver-
ify the inventory, analysis, modeling and display functionality of TGRASS as
well as the data exchange capabilities with R and ParaView. A detailed de-
scription with code examples is available in Appendix B. The E-OBS datasets
of daily temperature and daily precipitation with a spatial resolution of 0.25
degrees (Haylock et al., 2008) was used for this analysis. The daily mean tem-
perature data was imported and registered in a new space time raster dataset
with 22644 maps using the modules r.in.gdal, t.create and t.register. The next
step was the monthly, seasonal and yearly aggregation of the daily average
temperature data with t.rast.aggregate. The module t.rast.extract was used
to extract specific space time raster datasets for each season. Then for each
season specific STRDS the linear regression slope was computed from 1950
- 2011 with t.rast.series. The resulting maps are visualized in Figure 5. The
module t.rast.univar was used to compute the mean seasonal temperature
time series of the temperate climate zone. The output of t.rast.univar was
imported into R to create the visualization shown in Figure 6a. Three vector
points were created using the coordinates of the three capital cities Berlin,
London and Paris. The points were used to sample the seasonal mean tem-
perature space time raster datasets using t.vect.observe.strds. The resulting
data were extracted with t.vect.db.select and visualized with R, see figures
6b, 6¢ and 6d. The 5 year mean temperature of the yearly temperature space
time raster dataset was computed with r2.mapcalc after the conversion of the
STRDS into a space time voxel cube with t.rast.to.rast3. The resulting space
time voxel cube with a temporal extent from 1952 to 2008 and a granularity
of one year was exported as netCDF file with r3.out.netedf and visualized

Ohttp://grass.osgeo.org/
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(a) Linear regression slope of spring mean (b) Linear regression slope of summer mean
temperature temperature

(¢) Linear regression slope of fall mean tem- (d) Linear regression slope of winter mean
perature temperature

Figure 5: The linear regression slope computed for all seasons from 1950 -
2011. Red color indicates rising temperature, blue indicates falling temper-
ature. Units are degree Celsius per year.
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Seasonal mean temperature trend of the
temperate European climate Zone from 1950 - 2010
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Figure 6: Mean temperature trend for the temperate climate zone of the
European Union and the capitals Berlin, London and Paris.
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with ParaView. Four screenshots of the ParaView time series visualization
are shown in Figure 7.

6. Discussion

This paper presents TGRASS, a temporal GIS for field based environ-
mental modeling. We demonstrate that an existing spatial geographic infor-
mation system can be modified into a field based temporal GIS. An extended
snapshot approach allows the reuse of the spatial management, analysis, pro-
cessing and visualization capabilities of GRASS for spatio-temporal tasks.

GRASS provides support for different spatial fields represented as raster,
3D raster and vector maps. We integrated the time dimension in GRASS by
implementing time stamp support for all spatial fields. Spatio-temporal fields
are represented in TGRASS as space time datasets. Space time datasets al-
low the efficient handling, analysis and processing of massive data using sim-
ple temporal GIS commands. Dedicated modules for temporal management
simplify the handling of space time datasets and time stamped maps. The
decision to use linear discrete time instances and intervals as time stamps for
spatial fields allows a broad application in environmental modeling. Cyclic
time can be emulated using scripts that loop over space time datasets. Dif-
ferent branches from branching time can be represented by scenario specific
space time datasets. However, the linear discrete time approach leads to
management overhead for models that are based on cyclic or branching time.

Our approach allows the investigation of spatio-temporal relations be-
tween space time datasets of different kind (raster, 3D raster and vector)
using a combination of temporal sampling methods and spatial sampling
modules. The module t.sample was designed to describe the temporal rela-
tionships between space time datasets. The textual output of this module can
be used as input for several spatial modules that perform spatial sampling
for example: r3.cross.rast, v.what.rast, v.what.rast3, v.what.vect, v.rast.stats.

Map calculations between space time datasets of type raster or 3D raster
are supported by dedicated modules using different temporal sampling meth-
ods. The module r3.mapcalc can be used for sophisticated spatio-temporal
map calculations of space time voxel cubes. Neighborhood analysis as pro-
vided for space time voxel cubes using r3.mapcalc are not supported for space
time raster and 3D raster datasets. However, space time raster datasets with
valid temporal topology and interval time can be converted into space time
voxel cubes using the module t.rast.to.rast3.
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Figure 7: Four screenshots showing the five year mean temperature of the
European Union and Turkey visualized with ParaView as key frame anima-
tion from 1952 to 2008. Contour lines have been created for 9, 10 and 11

degree Celsius.
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Spatio-temporal queries are supported for all space time datasets using
a combination of SQL. WHERE statements for temporal related selection
and the spatial and attribute querying capabilities of spatial modules. In
addition, simple spatio-temporal and attribute specific queries are supported
as SQL WHERE statements, since the temporal and spatial extent as well
as map specific metadata is stored in the temporal SQL database.

TGRASS supports states, events and processes. States are an essential
part of our temporal GIS approach. Events can be detected by combining the
temporal topology capabilities of TGRASS with its spatial overlay function-
ality. Hence differences between temporally related time stamped maps can
be computed and stored, regardless of the type of the maps. However, our
approach lacks efficiency in storage and computation in comparison to the
ESTDM approach. The representation of a process (Yuan, 2001) is available
in TGRASS using space time datasets.

In the context of field-based modelling, a remaining future challenge is
to better visualize space time datasets, and to handle events and nested pro-
cesses more efficiently. In the broader context of modelling spatio-temporal
phenomena, challenges the integration of our field based modelling environ-
ment with non-field based phenomena such as trajectories, lattice data, and
(marked) point patterns (Stasch et al., 2014).

7. Conclusion

We implemented TGRASS, a temporal GIS for field based environmental
modeling based on the open source geographical information system GRASS.
The introduction of space time datasets that represent spatio-temporal fields
in TGRASS, allows the efficient management and processing of massive envi-
ronmental data and the analysis of relations between spatio-temporal fields.
A comprehensive tool set for spatio-temporal management, analysis, pro-
cessing and visualization is now available with the implementation of several
temporal and spatio-temporal modules and the possibility to combine spa-
tial modules with temporal modules. Our temporal GIS supports the import
and export of the widely used spatio-temporal data format netCDF to assure
data interoperability to existing sophisticated spatio-temporal analysis and
visualization software CDO and ParaView. The structured textual output
of the analysis modules allows the direct processing and visualization with
the R statistical environment. The analysis of a massive climate dataset has
demonstrated the environmental modeling capabilities of our approach.
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Appendix A. Temporal GRASS GIS Modules

Table A.1: Modules for temporal analysis and database management

Module

Description

t.connect
t.create
t.info
t.list
t.register
t.remove

t.rename
t.sample

t.support
t.topology

t.unregister

Sets or shows the temporal GIS database connection
information of the current mapset

Create the structure of a new space time dataset in the
temporal GIS database

Lists information about space time datasets and maps
registered in the temporal GIS database

Lists space time datasets and maps that are registered
in the temporal database

Register raster, vector and 3D raster maps in the tempo-
ral GIS database or additionally in a space time dataset
Remove space time datasets from the temporal GIS
database

Renames a space time dataset

Sample input space time dataset(s) with a sample space
time dataset and print the result

Modifies and update the metadata of a space time
dataset

List temporal relations of the maps in a space time
dataset

Unregister raster, vector and 3D raster maps from the
temporal GIS database or a specific space time dataset
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Table A.2: Space time raster dataset processing modules

Module

Description

t.rast.aggregate

t.rast.aggregate.ds

t.rast.colors
t.rast.export
t.rast.extract
t.rast.gapfill
t.rast.import
t.rast.list
t.rast.mapcalc
t.rast.out.vtk
t.rast.series

t.rast.to.rast3

t.rast.univar

Create a new space time raster dataset from the aggre-
gated data of an existing space time raster dataset
Aggregated data of an existing space time raster dataset
using the temporal topology of a second space time
dataset

Creates/modifies the color table associated with each
raster map of the space time raster dataset

Export a space time raster dataset

Extract a subset of a space time raster dataset

Replace gaps in a space time raster dataset with inter-
polated raster maps

Import a space time raster dataset

List registered maps of a space time raster dataset
Perform r.mapcalc computations of temporal related
raster maps in space time raster datasets

Export a space time raster dataset as VITK time series
Perform different aggregation algorithms from r.series
on all or a subset of raster maps in a space time raster
dataset

Convert a space time raster dataset into a 3D raster map
representing a space time voxel cube

Calculates univariate statistics from the non-null cells
for each registered raster map of a space time raster
dataset

Table A.3: Space time 3D raster dataset processing modules

Module

Description

t.rast3d.extract
t.rast3d.list
t.rast3d.mapcalc

t.rast3d.univar

Extract a subset of a space time 3D raster dataset

List registered maps of a space time 3D raster dataset
Perform r3.mapcalc computations of temporal related
3D raster maps in space time 3D raster datasets
Calculates uni-variate statistics from the non-null cells
for each registered 3D raster map of a space time 3D
raster dataset
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Table A.4: Space time vector dataset processing modules

Module Description

t.vect.db.select Prints attributes of vector maps registered in a space
time vector dataset

t.vect.export Export a space time vector dataset

t.vect.extract Extract a subset of a space time vector dataset

t.vect.import Import a space time vector dataset

t.vect.list List registered maps of a space time vector dataset

t.vect.observe.strds  Observe specific locations in a space time raster dataset

over a periode of time using vector points

t.vect.what.strds Sample a space time raster dataset at spatio-temporal

locations of a space time vector dataset

t.vect.univar Compute uni-variate statistics of a space time vector

dataset based on a single attribute row

Appendix B. Analyzing seasonal mean temperatures in the tem-
perate climate zone of Europe

This is a detailed description of the mean temperature E-OBS dataset
analysis that was used to verify the capabilities of TGRASS. The following
workflow was performed on a 64Bit AMD Linux system. GRASS in version
7 was compiled and installed from the source code. All commands must be
executed in the GRASS Unix command shell.

The E-OBS temperature and precipitation gridded datasets, provided by
the ECA&D as netCDF files, has a daily temporal resolution and a spatial
resolution of 0.25 degrees. The dataset was download as several compressed
netCDF files from the ECA&D website!!. Each netCDF file was imported
into GRASS GIS using the module r.in.gdal with the specification of the
band number offset to assure chronological numbering of the imported raster
maps. The flag —o indicates that the projection check should be skipped to
allow the import. The reason for this is that the ECAD netCDF files do not
include projection informations.

r.in.gdal —o input=tg_0.25deg_reg_-1950 —1964_v5.0.nc \
output=temperature_mean offset=0

Yhttp://eca.knmi.nl/download/ensembles/data/Grid_0.25deg_reg/
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r.in.gdal —o input=tg_0.25deg_-reg_-1965—-1979_v5.0.nc \
output=temperature_mean offset=5479

r.in.gdal —o input=tg_0.25deg_reg_-1980—1994_v5.0.nc \
output=temperature_mean offset=10957

r.in.gdal —o input=tg_0.25deg-reg-1995—-2011_v5.0.nc \
output=temperature_mean offset=16436

A space time raster dataset named temperature_mean_1950_2011_daily was
created to simplify the handling of more than 22000 raster maps:

t.create type=strds output=temperature_mean_1950-2011_daily \
temporal=absolute \
title="European mean temperature 1950—2011” \
description="The European daily mean temperature from 1950 — 2011”

A small Python script was implemented that created the input text file for
the module t.register to support the registration of all imported raster maps
in the space time raster dataset temperature_mean_1950-2011_daily. To gen-
erate the interval time stamps the start date was set to the first of January
1950 using a time increment of one day:

cat > ECAD _climate_data_timeseries_1950.2011 .py << EOF
file = open(” map_list.txt”, "w”)
for i in range(22461):

file . write(” temperature_mean.%i\n” % (i + 1))

file . close ()
EOF

python ECAD _climate_data_timeseries_-1950-2011.py

t.register —i type=rast input=temperature_.mean-1950-2011_daily \
file=map_list.txt start=1950—01—-01 increment="1 day”

The daily data was aggregated with the module ¢.rast.aggregate to monthly,
seasonal and yearly granularity. Using the module g.region the correct region
and resolution for temporal aggregation was set. Spatial aggregation was not
required in this case.

g.region —p rast=temperature_mean.1

t.rast.aggregate input=temperature_-mean_1950-2011_daily \
method=average \
output=temperature_mean_-1950-2011_monthly \
base=temperature_mean_monthly \
granularity="1 month”

t.rast.aggregate input=temperature.mean_1950_2011_monthly \
method=average \
output=temperature_mean_1950_2011_seasonal \
base=temperature_mean_seasonal \
granularity="3 months”\
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where="start_time >= ’'1950—-03—-01’ and start_time < ’2011-02—-01""

t.rast.aggregate input=temperature_mean_1950_.2011_monthly \
method=average \
output=temperature-mean-1950-2011_yearly \
base=temperature_mean_yearly \
granularity="1 year” \
where="start_time < ’2011-01-01"”

The temperature raster maps of spring, summer, fall and winter were ex-
tracted separately using SQL WHERE statements. This results in new space
time raster datasets. Additionally the unit of the temperature was converted
from 0.01 degree Celsius into 1 degree Celsius using a raster map calcula-
tion expression. The following command was repeated for each season using
different monthly offsets and output naming:

t.rast.extract input=temperature_mean_1950_2011_seasonal \
output=temperature_-mean-1950_-2011_spring \
where="start_time = datetime(start_time , ’start of year’, ’2 month’)” \
expression="temperature_mean_-1950_-2011_seasonal / 100.0” \
base=temp_-mean_spring

A mask was applied to analyze the seasonal temperature for the temperate
climate zone. The mask was based on the extraction of the thermal climate
zone using the GRASS map calculator r.mapcalc and the thermal climate
zone map provided by Enuvironmental conditions of Food Insecurity, Poverty
and Environment Global GIS Database (FGGD)!. Figure B.8 shows the
simplified climate zones map that was used. The temperature trend of spring,
summer, fall and winter was computed with t.rast.series using the option
slope to compute the linear regression slope for each season. This slope
represents the average temperature change per year in degree Celsius. The
following command combination was repeated for each season:

t.rast.series input=temperature_mean_1950_2011_spring \
output=temperature_mean_1950_2011_spring_slope \
method=slope

Additionally the color for each map was set to the predefined GRASS color
table differences by taking the temperature range of all maps into account.

r.colors map=temperature_mean_1950_2011_fall_slope ,
temperature_mean_1950_2011_spring_slope ,
temperature_mean_1950_-2011_summer_slope ,
temperature_mean-1950-2011_winter_slope \
color=difference

2http://www.fao.org/geonetwork/srv/en/metadata. show?id=14056
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Figure B.8: Simplified thermal climate zones of the European Union and
Turkey derived from the thermal world climate zones provided by FEnuviron-
mental conditions of Food Insecurity, Poverty and Environment Global GIS
Database.

Since the output of the module t.rast.series is a raster map, the common
display modules of GRASS can be used for visualization. For each season
the temperature trend, the trend legend and the administrative borders were
shown. The administrative boundaries are part of the Eurostat NUTS!
dataset. The following commands were repeated for each season. Results are
shown in Figure 5.

d.mon start=wx0

d.rast map=temperature_mean_1950_-2011_spring_slope

d.vect map=administrative_boundaries

d.legend map=temperature-mean_-1950-2011_spring_slope \
at=55,95,83,85 range=—-0.04,0.06

The module t.rast.univar was used to compute the mean seasonal temper-
ature for the temperate climate zone. The analysis resulting in Figure 6a
was performed with the combination of the module t.rast.univar and R for
plotting time series data.

To analyze the seasonal temperature trend of the cities Paris, London and
Berlin, a simple text file with latitude/longitude coordinates was created and
imported as vector points map with v.in.asci.

13http://epp.eurostat.ec.europa.eu/portal/page/portal/gisco_
Geographical_information_maps/popups/references/administrative_units_
statistical_units_1
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cat > capital_coords.txt << EOF
Paris|48.856667(2.351667
London|51.50939| —0.11832

Berlin |52.518611]13.408056

EOF

v.in.ascii input=capital_coords.txt output=observations \
x=3 y=2 columns="capital TEXT, y DOUBLE, x DOUBLE’

The imported vector points observations were used to sample the spring,

summer, fall and winter mean temperature using the module t.vect.observer. strds.

New space time vector datasets were created to store for each time stamped
raster map the point sampled values in time stamped attribute tables. The
module t.vect.db.select was used to extract the temperature history for each
season and city. The following command was used to create the observations
for Paris in spring:

t.vect.observe.strds input=observations \
output=spring_observations \
vector=spring_observations_1950.2011 \
strds=temperature_mean_1950-2011_spring \
column=temperature

t.vect.db.select input=spring_observations where="cat = 17 \
column=temperature

The output of t.vect.db.select for each season and capital was imported into
the R statistical environment to create Figure 6b, 6¢c and 6d. This is a
shortened version of the resulting output of t.vect.db.select:

start_time |end_time |temperature

1950—03—01 00:00:00|1950—-06—-01 00:00:00|11.1725734767
1951-03—01 00:00:00{1951—-06—-01 00:00:00]/9.7168243728
1952—-03—01 00:00:00/1952—-06—-01 00:00:00]|12.4741541219

2008—03—01 00:00:00|2008 —06—01 00:00:00[12.2055340502
2009—03—01 00:00:00|2009—-06—-01 00:00:00|12.5818673835
2010—03—01 00:00:00/2010—-06—-01 00:00:00]|11.5653046595

The yearly aggregated mean temperature space time dataset was converted
into a space time voxel cube to perform spatio-temporal map calculations.
The goal was to compute the 5 year mean temperature for each voxel and
to analyze it visually in ParaView for the FEuropean Union and Turkey.
The first steps was to adjust the MASK and region settings with r.mask
and g.region followed by the transformation using the module t.rast.to.rasts.
Then the space time voxel cube map calculation was performed with the
module r3.mapcalc. The temporal unit and the time stamp must be explic-
itly set with r3.support and t.register. Finally the resulting space time voxel
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cube was exported as netCDF file and visualized with ParaView, see Figure
7. The commands were executed in the following order:

r . mask thermal_climate_zones_europe
g.region —p3 rast=temperature_mean.1

t.rast.to.rast3 input=temperature_mean_1950_.2011_yearly \
output=vol_ly_mean

g.region —p3 rast3=vol_ly_mean

r3 . mapcalc expression="vol_5y_mean = (vol_-ly_mean[0
vol_ly_mean [0

vol_ly_mean [0

[o,

[o,

K b
b b
b

vol_ly_mean
vol_ly_mean

0,—-2] + \
Dy=1] ==
0, 0] +\
0, 1] +\
0, 2])/500.0”

)

t.register type=rast3 map=vol_5y_mean start:”195070170177 end="2011-01-01”
r3.support map=vol_5y_mean vunit="years”

r3.out.netcdf input=vol_5y_mean output=vol_5y_mean.nc null=-1000
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