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Abstract Spatio-temporal aggregation of observed or predicted values for
environmental phenomena is needed for fusing sensor data or coupling sensors and
environmental models. However, estimates from sensors or environmental models
can never represent our world precisely and are subject to errors. Hence, there is
uncertainty in the estimates that needs to be considered in environmental model
workflows. This chapter presents an approach for an error-aware spatio-temporal
aggregation in the Web, where probabilistic uncertainties are used within a Monte
Carlo simulation. The approach is applied in a Web-based model chain that pro-
vides uncertain crop yield predictions on field parcel level that are aggregated to
larger regions.

1 Introduction

The Model Web envisions discovery and access of environmental observations
and models using the internet as mediating platform (Geller and Turner 2007;
Nativi et al. 2012). Where environmental models, even those of same domains,
currently exist in parallel and do not benefit from each other, the Model Web could
ease the coupling of such models. To achieve this vision, the environmental
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observations and models should be exposed via publicly available standardized
Web service interfaces such as those defined by the Open Geospatial Consortium
(Maue et al. 2011). Spatio-temporal aggregation (Jeong et al. 2004; Vega Lopez
et al. 2005; Stasch et al. 2012) is needed in the Model Web for two reasons: The
spatio-temporal resolution of the sensor output might not match the resolution
required by a model and, when chaining environmental models, the resolution of
the output of one model might differ from the resolution required by another
model.

However, environmental observations and models are subject to error due to the
observation methods or due to simplified representation of real world phenomena
by models. As a result, there is uncertainty in observations and model results that
needs to be considered (Heuvelink 1998). The UncertWeb project aims to provide
tools for managing and communicating uncertainties in the Model Web (Bastin
et al. 2013). Such an uncertainty-enabled Model Web requires an error-aware
spatio-temporal aggregation that explicitly considers uncertainties in input data
and allows to propagate uncertainties to the aggregated estimates. As uncertainty
can be reduced by aggregation in model workflows, an error-aware spatio-
temporal aggregation also provides means to adjust the uncertainty, for example
by averaging out some of the variability in the data.

The core contribution of this chapter is an approach for an error-aware spatio-
temporal aggregation in the Model Web relying on open standards. A probabilistic
approach is chosen for representing the uncertainties and a Monte Carlo simulation
is used to propagate uncertainties in aggregation processes. To provide error-aware
aggregation processes in the Model Web, a common Web service interface is defined
and implemented in a Web-based model workflow for predicting land-use and crop
yield response to climatic and economic change in England (Jones et al. 2012).

The remainder of the chapter is structured as follows: Sect. 2 provides an
overview of error-aware spatio-temporal aggregation. Afterwards, the approach for
Web-based error-aware aggregation is presented in Sect. 3. The application of the
approach in a case study for aggregating yield predictions is described in Sect. 4,
followed by the presentation of results in Sect. 5 and a discussion of the approach
in Sect. 6. In the last section, conclusions are drawn and next steps are presented.

2 Error Aware Spatio-Temporal Aggregation

An aggregation process computes a single value, an aggregate, for a group of
attribute values using an aggregation function. The values are grouped by parti-
tioning predicates. Spatio-temporal aggregation groups spatio-temporal features by
spatial and/or temporal predicates and applies aggregation functions to those
features in order to change the spatio-temporal resolution of datasets (Jeong et al.
2004; Vega Lopez et al. 2005; Stasch et al. 2012). An example of a spatio-
temporal aggregation process is shown in Fig. 1a. Temperature observations
gathered hourly at monitoring stations are aggregated temporally to daily maxima
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and spatially to means of spatial regions. The temporal grouping predicates consist
of days, the temporal aggregation function is MAX, the spatial grouping predicates
are spatial polygons (for instance, administrative boundaries) and the spatial
aggregation function is MEAN. The grouping predicates as well as the aggregation
functions might require additional specific input parameters to the aggregation
process. For example, the spatial grouping predicates need to be defined by a set of
polygons.

There are two possible sources of errors in spatio-temporal aggregation: (1) The
input data of an aggregation process might be uncertain and cause errors in the
aggregates or (2) the aggregation functions used for computing the values intro-
duce uncertainties. An example of (2) is the aggregation of spatio-temporally
distributed information on rainfall and soil moisture over a catchment during and
after a rainfall event, which is aggregated to river discharge in order to predict
floods. In this case, the aggregation function is a distributed hydrological model
that can only approximate the true catchment response to a rainfall event, due to a
simplified representation of the true aggregation process.

In this work, we focus on uncertainties in input data (1) that are aggregated
using simple aggregation functions, e.g. mean, sum, or max, as illustrated in
Fig. 1b. In case of spatio-temporal data, the uncertain input may be provided as a
spatio-temporal random field YðqÞ, where q is a spatio-temporal location. This
random field is usually assumed to be normally distributed, i.e. YðqÞ�NðlðqÞ;RÞ,
with lðqÞ the mean vector for the locations and R the covariance matrix. In case an

Fig. 1 Illustration of (error-aware) spatio-temporal aggregation (modified from Stasch et al.
2011). a Spatio-temporal aggregation. b Error-aware spatio-temporal aggregation

Error-Aware Spatio-Temporal Aggregation in the Model Web 209



aggregation function f is a non-linear function, e.g. computation of the maximum
value, the expected value of the aggregates will typically differ from the aggre-
gated expected values: E½f ðYðqÞÞ� 6¼ f ðE½YðqÞ�Þ. Hence, aggregating the parame-
ters of the input distributions in order to compute the probability distributions for
the aggregates may introduce a bias. To avoid this, a Monte Carlo simulation
approach is adopted to propagate the uncertainties in the aggregates (Heuvelink
and Pebesma 1999). In case the inputs are provided as probability distribution
functions (PDF) for each measurement value, realisations are generated from the
input distributions and the aggregation process is run for each set of realisations
resulting in a set of realisations for each output region that in turn approximates the
target PDF.

The pseudocode for applying a Monte Carlo simulation is shown in Algorithm 1.
The function yi returns the i-th realisation value of a spatio-temporal random field
YðqÞ at spatio-temporal location q within the target region R representing the
grouping predicate. The realisation values per region are then used by the aggre-
gation function f as inputs to compute the aggregate, for example, computing the
sum. The actual aggregates for each spatio-temporal region R and i-th realisation ri

are returned by �y. As an option, instead of returning all realisations of aggregates for
each spatio-temporal region, summary statistics for the realisations, such as mean
or the 95 %, may be computed by a function g as illustrated in Algorithm 2.

Besides allowing to propagate uncertainties with non-linear aggregation func-
tions, the Monte Carlo simulation approach also allows for more flexibility than an
analytical approach that is usually bound to a specific aggregation process
(Heuvelink 1998). It also allows to consider input uncertainties for already existing
deterministic aggregation processes without the need to change the underlying
models of the aggregation processes. Spatio-temporal aggregation also provides a
mean to control the uncertainty in model workflows: Given that there is variability
in the data within the aggregation regions, aggregating the data to the mean of an
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area, may reduce variability. However, the degree of variability reduction depends
on the spatio-temporal autocorrelation (Gerharz and Pebesma 2012). The use case
shown below illustrates that it also depends on the aggregation function used.

3 Error-Aware Aggregation in the Model Web

After introducing the general approach for an error-aware aggregation, the ques-
tion remains how error-aware aggregation processes can be provided in the Model
Web. Firstly, the input data needs to be provided with uncertainties and these need
to be encoded in a standardized format (Sect. 3.1). Secondly, a common approach
for providing and utilizing aggregation functionality in the Model Web needs to be
defined that explicitly considers uncertainties (Sect. 3.2).

3.1 Formats for Spatio-Temporal Data with Uncertainties

In order to enable an error-aware spatio-temporal aggregation, the input data needs
to contain uncertainty information. Up to now, if present at all, the uncertainty
information is given in proprietary formats hindering a common approach and
implementation of an error-aware aggregation. Hence, there is a need to provide
common models and encodings for spatio-temporal data explicitly containing
uncertainties. The Uncertainty Markup Language (UncertML) (Williams et al.
2009) has been developed as a common model and exchange format for proba-
bilistic uncertainties. It allows to encode uncertainties as distributions, descriptive
statistics or as a set of realisations. As UncertML does not explicitly define how to
add spatial and temporal references to the uncertainties, there is a need for spatio-
temporal models and exchange formats that support uncertainties.

To exchange uncertain spatio-temporal data in the Model Web, two common
formats are defined. For vector data, the Uncertainty-enabled Observations &
Measurements (U-O&M) format integrates UncertML with Observations & Mea-
surements (O&M) (ISO 2010; Stasch et al. 2012), a common format for spatio-
temporal observations and model results. Uncertainty can either be provided as
additional metadata or as the result of an observation. U-O&M can be serialized in
different formats such as XML, JSON, or plain text, such as comma separated
values (csv), and hence be used for exchanging uncertain spatio-temporal data in
the Model Web. The O&M format also allows to be used across different spatio-
temporal aggregation levels of observations. In this work, we use observations with
uncertain results as shown in Fig. 2 in XML format. The uncertainty is encoded as
UncertML realisations in the result of the observation. While O&M is well suited
for vector-based spatial data, NetCDF is a well-established format for gridded/
raster data. NetCDF-U (Bigagli and Nativi 2011) has been defined to encode
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uncertainties in NetCDF (Domenico 2011) and is utilized in the Spatio-temporal
Aggregation Service (STAS) for aggregating uncertain gridded data.

3.2 Error-Aware Spatio-Temporal Aggregation Service

To provide spatio-temporal aggregation functionality in the Model Web, we are
extending the STAS that has been introduced by Stasch et. al. as an aggregation
service for the Sensor Web (Stasch et al. 2012). As the Sensor Web envisions the
tasking of sensors and the exchange of sensor data in the Web (Bröring et al.
2011), the Model Web may be seen as an extension that allows the discovery,
access, and execution of environmental models and not just sensors. The overall
concept of the STAS for the Model Web is illustrated in Fig. 3. The STAS is
defined as a profile of the OGC Web Processing Service (WPS) (Schut 2007) and
can be utilized as a mediator that transforms data from one resolution to another.
The input data can be provided as output of model services, data sources, or as
resources on a Web server. The STAS itself can then be invoked by end-users,
model services, or orchestration engines and the aggregated data can in turn be
directly published to model or data services or stored as a resource on a Web
server.

Fig. 2 Encoding of an observation that contains realisations of yield predictions for a field
polygon in the year 2000
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The usual interaction pattern between clients and the aggregation service is
shown as sequence diagram in the Unified Modeling Language (UML) in Fig. 4.
The grouping predicates and aggregation functions of an aggregation process are
identified in Unified Resource Identifiers (URI) of the aggregation processes.
Therefore, we are utilizing the URI scheme as defined in (Stasch et al. 2012). All
URIs of the available aggregation processes are listed in the service description
(Capabilities document) that can be retrieved by the GetCapabilities
operation. If a detailed description of a specific aggregation process including all
input and output parameters is needed by the client, it can be retrieved using the
DescribeProcess operation. To actually run an aggregation, the Execute
operation needs to be invoked by passing an ExecuteRequest to the service.
The request contains all necessary input parameters such as the input data (or a
pointer to the data), parameters of the grouping predicates or of the aggregation
functions. After aggregation, the ExecuteResponse can directly return the
aggregated data in a requested format to the client or pass a reference, in case the
aggregated data is inserted in another data service or stored on a server.

Fig. 3 Role of the spatio-
temporal aggregation service
in the model web. It acts as a
mediator between data and
model services in the model
web, if an aggregation is
required to fit outputs to other
inputs. The aggregated data
can be published via data
services again

Fig. 4 UML sequence
diagram showing the usual
interaction pattern between a
client and the STAS
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Common input parameters are defined for all aggregation processes in the
Model Web as listed in Table 1. Depending on the grouping predicates and
aggregation functions, additional parameters can be defined for particular aggre-
gation processes. For example, the process introduced in Sect. 2 requires the
additional parameter FeatureCollection that contains the polygons for
the spatial grouping predicates and duration that defines the duration (24 h) for
the temporal grouping predicates. The spatial and temporal references of the
aggregates are defined by the parameters of the grouping predicates. The result of
an aggregation execution not only provides the aggregated data, but also additional
provenance information by pointing to an instance of a specific aggregation pro-
cess description. This aggregation process description includes information about
the predicates and aggregation functions used. In addition, the aggregated data
points to the original data from which the aggregates have been computed.

A Monte Carlo simulation approach is used to propagate uncertainties in the
STAS. The interaction pattern of an error-aware aggregation process in the STAS
is shown in Fig. 5. Clients can indicate, whether a Monte Carlo simulation for the
aggregation process should be run or not by passing the optional NumberOf-
Realisations in an Execute request. If this parameter is present, the
uncertain data has to be provided in the InputData parameter of the Execute
request either as PDFs or as realisations. In case the uncertain inputs are PDFs,
realisations are taken from the PDFs using the Uncertainty Transformation Service
(UTS). The UTS is an external Web service for transforming uncertainties from
one representation into another (Pross et al. 2012). For example, the UTS allows to
convert from a normal distribution to a set of realisations. Then, for each Monte
Carlo realisation, the aggregation is executed using an aggregation engine, e.g. the
R software (R Development Core Team 2011), resulting in a set of samples of

Table 1 Common input parameters of aggregation processes provided by the STAS for the
model web

Input parameter Cardinality WPS input Description
Name Type

Identifier 1 URI Identifier of the aggregation processes that
should be run; defines the grouping
predicates and aggregation functions

Variable 0. . .* LiteralData Name of variables (e.g. air temperature) that
should be aggregated in case the input data
contains several variables

InputData 1 ComplexData Data that should be aggregated
SpatialFirst 0. . .1 Boolean Indicates whether spatial aggregation should be

done first (true) or not (false) in case of non-
linear aggregation functions for space and/or
time

TargetServer 0. . .1 LiteralData Endpoint of the server, to which aggregated data
should be written

TargetServerType 0. . .1 LiteralData Type of server to which the aggregated data
should be written
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aggregated data. From the Web service, the aggregated data can either be retrieved
as the full set of spatio-temporally aggregated realisations or as summary statistics
of the realisations. Table 2 shows the additional input parameters for all error-
aware aggregation processes. The NumberOfRealisations parameter is
needed by all processes and defines the number of Monte Carlo simulation runs. In
addition, the OutputUncertaintyType can define additional summary sta-
tistics that should be returned for the set of realisations of aggregated data. The
OutputUncertaintyType parameter has to use the identifiers (URLs) of
UncertML for the different statistics. The InputData parameter that is inherited
from the common input paramters of the aggregation processes (Table 1) has the
restriction to contain either realisations or distributions defined for UncertML in its
inputs. In order to avoid errors, when clients are sending other uncertainty types or
data without uncertainties to the service, the additional metadata element

Fig. 5 UML sequence diagram showing the interaction pattern of an error-aware aggregation
process between client, spatio-temporal aggregation service (STAS), uncertainty transformation
service (UTS) and an aggregation engine
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variable-uncertainty-types, defined in the metadata conventions of the
UncertWeb project, is nested in the ows:Metadata element of the InputData
parameter in an aggregation process description is defined. The variable-
uncertainty-types shall contain URLs of the UncertML dictionary for the
supported uncertainty types. Besides the tag variable-uncertainty-
types, several additional metadata tags, for example for the resolution of raster
data, have been defined in the UncertWeb project and can also be used with other
Web services than those defined by the OGC as described in Jones et al. (2012).

4 Case Study

This section describes a case study in which our approach is applied. The section
starts with a description of the application scenario (Sect. 4.1) followed by a
description of the Web service implementation (Sect. 4.2).

4.1 Application Scenario

The Food and Environment Research Agency1 of the UK has established an
environmental model workflow that is used to estimate land-use and crop yield
responses to climatic and economic change. This model workflow has been
extended to consider uncertainties and has been deployed via Web services in the
internet (Jones et al. 2012). The model workflow estimates yields per field parcel
for certain crop types, e.g. wheat or potatoes. The uncertainty in the yield pre-
dictions is propagated by running the yield model a number of times resulting in a
number of yield realisations for each field per year.

Table 2 Additional parameters of error-aware aggregation processes

Input parameter name Cardinality WPS input
type

Description

NumberOfRealisations 0. . .1 LiteralData Number of Monte Carlo simulation runs
OutputUncertaintyType 0. . .* LiteralData The types of uncertainties as defined by

UncertML in which the aggregated
outputs should be provided. Per default,
the aggregated data is provided as
realisations, but also descriptive statistics
of the realisations such as mean or
standard deviation can be requested

1 http://www.fera.defra.gov.uk/
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For privacy reasons and to provide an overview on a larger scale, the field
estimates need to be aggregated to spatial regions. Thereby, the fields might be
contained in several regions and some places in the regions might not be a field,
e.g. urban areas or forests, as shown in Fig. 6.

Following our definition of spatio-temporal aggregation, the spatial grouping
predicates are spatial regions and the spatial aggregation function f is defined as
follows:

f ðRÞ ¼
XNR

i¼1

ðxi � AiRÞ ð1Þ

with R a spatial region over which we aggregate, NR the number of field parcels
intersecting R, xi the estimated yield per hectar, and AiR the spatial intersection
area of field parcel i and region R. The yield prediction per hectar is multiplied
with the area that intersects a region and for each region, the results are summed
resulting in the total yield for each region. The data used in the case study consists
of one thousand realisations of yield for 24 field parcels for the year 2012 that are
aggregated to eight regions. For privacy reasons, not the real field parcel data are
used, but artificially created parcels and regions were generated by a random
process. As the data does only represent the year 2012, it does not need to be
grouped temporally before executing the aggregation, though this is supported by
the service implementation.

Fig. 6 Excerpt from an overlay of fields and regions. Fields are shown in white colour and
regions are shown in grey colours. The fields may be contained in several regions and some parts
of the regions are not covered by fields
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4.2 Web Service Implementation

The STAS is implemented as an extension of the 52� North WPS.2 Therefore, an
AbstractAggregationProcess class has been implemented that provides
utility methods for accessing the common parameters of all aggregation processes.
Several aggregation processes realizing the AbstractAggregationPro-
cesses are implemented for vector and/or raster data. Three classes have been
defined for the implementation of our error-aware aggregation approach as shown
in Fig. 7. The AbstractUncertainAggregationProcess provides utility
methods for the common inputs of error-aware aggregation processes and defines
an additional abstract method runMonteCarlo that needs to be implemented by
every subclass.3

To enable an aggregation as described in the previous Sect. 4.1, the class
Polygon2PolygonWeightedSum has been implemented that extends the
AbstractUncertainAggregationProcess. In addition, a Poly-
gon2PolygonMean class is available to compute the arithmetic mean of the
yields per region. For implementing the aggregation, a hash-based approach as
described in Jeong et al. (2004) has been implemented in Java using the JTS
library as follows: First, the input data is grouped by time and for each time, the
input collection is stored in a hash map. Afterwards, the spatial grouping predicate
(spatial intersection of the input features and the target regions) is checked. If there
is an intersection, the realisations of intersecting features are cached with the
intersection areas as weights for each target region using a hash map again. Then,
the aggregation is executed for each target region several times until the number of
realisations is reached and, depending on the requested uncertainty types, different
statistics of the realisations per target region are computed.

Fig. 7 UML class diagram of the two additional classes that are implemented for the error-aware
aggregation service

2 http://52north.org/communities/geoprocessing/wps/
3 The classes are provided under the GNU General Public Licence (GPL) v2 licence as part of
the STAS implementation at https://svn.52north.org/svn/geostatistics/main/uncertweb/stas/trunk
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The uncertain yield predictions are provided in the U-O&M format with Un-
certML ContinuousRealisations as observation values for each field. The
STAS runs the aggregation for each realisation of yield values per fields and hence
produces 1,000 realisations for the aggregated yields per region. These are then
returned again in the U-O&M format. The request/response encoding is auto-
matically done by an additional component of the WPS framework developed in
this work to support uncertain spatio-temporal inputs and outputs4 (Sect. 3.1).

5 Results

Providing error-aware aggregation functionality in a standardized Web service
allows for exchanging the aggregation methods in a flexible way in Web-based
model workflows. In addition, the extension for Monte Carlo simulation allows for
propagating the uncertainties during the aggregation.

Aggregation processes have been executed for computing the weighted sums
and the mean of the yield values per region. Figure 8 shows the visualisation of the
aggregated estimates in the UncertWeb visualisation client (Gerharz et al. 2012).

Fig. 8 Screenshot of the UncertWeb visualisation client visualising the non-aggregated (left) and
aggregated yield estimates (right). Realisations of yield estimates can be visualised for specific
fields and regions

4 The input and output extension of the 52N WPS framework is acccessible as a separate
package at https://svn.52north.org/svn/geostatistics/main/uncertweb/52n-wps-io-uncertweb/trunk
and can also be used by other WPS implementations for uncertain data.
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For comparison, the non-aggregated as well as the aggregated estimates can be
visualized. In this example, the realisation means of the fields as well as of the
aggregates are shown in the map. For specific polygons all realisations are visi-
ualised in a popup. The information about the process that generated the data is
given in the description of the layers. On the right side, for example, the URN
shown in the procedures element is the identifier of the aggregation process.

Table 3 shows the descriptive statistics of the aggregation with mean as
aggregation function. Firstly, means and variances of the yield realisations have
been computed. Then, the means and variances have been derived from the
realisation statistics. As expected, the mean yield per hectar is nearly the same for
the fields as for the regions. The variability in the data is reduced by the mean
aggregation, as the mean standard-deviation is reduced from 3.77 for the fields to
1.83 for the regions.

In order to compare the original field values with the weighted sum of the
regions, the original values have been multiplied by the area of each field. While
the aggregation to means of regions reduces the variability, the aggregation to
weighted sums increases the variability as can be seen in Table 4. However, the
coefficient of variation decreases in both cases.

6 Discussion

The approach of a Web based error-aware aggregation offers the following
advantages: (1) a common way to communicate uncertain spatio-temporal data in
the Web is defined, (2) the approach allows to change the resolution and

Table 3 Descriptive statistics of original data and aggregation results computed with mean as
aggregation function

Description Mean of realisation
means

Standard
deviations

Coefficient of
variation

Non-aggregated yield estimates
[in tonnes per hectar]

5.59 3.77 0.67

Aggregated yield estimates [in tonnes
per hectar]

5.56 1.83 0.33

Table 4 Descriptive statistics of original data and aggregation results computed with weighted
sum as aggregation function

Description Mean of realisation
means

Standard
deviations

Coefficient of
variation

Non-aggregated yield estimates
[in tonnes]

44.04 29.69 0.67

Aggregated yield estimates
[in tonnes]

155.54 49.94 0.32
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uncertainty in the data by aggregating them over space and time, (3) different
error-aware aggregation processes can be accessed in a common way in the Web
without the need to adopt workflow implementations for each aggregation process,
(4) the standardized interface and the data formats allow for an integration in
spatial information infrastructures, as they rely on standards used in these
infrastructures.

The aggregation functionality provided by the aggregation service may be
implemented, for example, in database systems (Jeong et al. 2004; Vega Lopez
et al. 2005) or software systems such as R (Pebesma 2012) and then be provided
by the aggregation service in the Web. While databases and other technologies
usually only offer specific aspects needed in error-aware aggregation processes, the
different technologies may be combined within the aggregation service. For
instance, though there are databases for probabilistic data (Benjelloun et al. 2006),
these databases do not provide spatio-temporal query functionality. An approach
using Monte Carlo simulation for query evaluation is described in (Jampani et al.
2008), while they do not tackle the issue of aggregate queries on spatio-temporal
entities. With our approach, the different technologies can be combined and pro-
vided in the Web via a common interface. In the case study, the input data has
been transferred to the STAS. However, in case of big data, it may be more
reasonable to tightly couple the aggregation functionality with the data sources as
described for a coupling between the Sensor Observation Service and the STAS in
our previous work (Stasch et al. 2012, p.117). The STAS interface can also be
utilized in this case, but the parameter used for passing the inputs may then only
identify data from the data source. This approach still allows to run the different
aggregations in the Web.

Though the U-O&M format (Stasch et al. 2012) is defined for exchanging
uncertain spatio-temporal vector data and NetCDF-U (Bigagli and Nativi 2011) is
used to exchange uncertain spatio-temporal rater data, there is currently no generic
standard for (uncertain) spatio-temporal data that is widely adopted. Hence, the
(uncertain) spatio-temporal data needs to be converted, before it can be published
in the Web and aggregated with the aggregation service. It needs to be explored,
how well U-O&M and NetCDF-U map to other formats that are already in use and
how uncertainty can be incoporated in such formats.

Another question is to which degree the process that generates the data relates
to a sensor or to a model, or whether both concepts should be treated seperately.
One would probably agree that a complex aggregation procedure such as a
hydrological forecast model that aggregates measurements in space and time
would not be considered as a sensor. However, observations such as discharge
measurements usually have undergone a modelling procedure (Beven et al. 2012)
and simple aggregations (and underlying models) are always part of technical
sensors where the aggregation is done on a low abstraction level. Hence, there is
still a need to clarify the semantics of the different concepts and, in a second step,
to formalize them in order to be used in the Web for semantic interoperability
(Sheth et al. 2008; Balazinska et al. 2007).
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As our use case is based on realisations, the spatial autocorrelation does not
need to be addressed in the Monte Carlo simulation. However, data formats
defined in our previous work (Graeler and Stasch 2012), can be utilised to rep-
resent spatio-temporal random fields. Web services can then use the formats and
provide spatio-temporal sampling procedures that consider the autocorrelation.

The current approach allows for the propagation of quantified uncertainties
either provided as realisations or probability distributions. Further investigation is
needed to check whether the current approach might be utilized in a scenario with
categorical data. Furthermore, our approach requires that uncertainty information
is available in the input data. Though there are already methods how to assess the
uncertainty in measurements (Taylor 1997), assessing the uncertainty per obser-
vation or model output remains a challenging statistical and operational problem.
In addition, most sensor data providers do not yet provide uncertainty information
with the data. Hence, incentives have to be explored how to motivate data pro-
viders to make the uncertainties in their data explicit.

The implementation described in this chapter only includes aggregation pro-
cesses, though the service interface of the STAS can also be used to provide
disaggregation processes as described in (Bierkens et al. 2000). Finally, once there
are more error-aware aggregation processes available in the Web that can be easily
combined with model and sensor services, the question remains how to find those
services and how to indicate that these aggregation services support uncertainty
propagation. While we have introduced a description format for aggregation
processes in our previous work, it has to be explored how these descriptions may
be integrated in common approaches for sensor discovery (Jirka et al. 2009) and
model web services (Nativi and Bigagli 2009).

7 Conclusion

This chapter presents an approach for an error-aware aggregation in the Model
Web. For error propagation, Monte Carlo simulation is utilized. The uncertainty in
the non-aggregated input data is provided as probability distributions, from which
samples are taken, or is directly provided as samples. Then, for each sample an
aggregation is carried out. Thus, the aggregation output consists of a set of real-
isations that in turn approximate the probability distribution of the aggregates. To
deploy error-aware aggregation functionality in the Web, common data formats for
uncertain spatio-temporal vector and raster data, U-O&M and NetCDF-U, are used
and a Web service interface is defined as a profile of the OGC Web Processing
Service. The application of the approach in a Web based model workflow for
estimating crop yields in the UK shows that the approach allows for a flexible
integration of aggregation processes and to propagate the uncertainties during
aggregation. The approach also allows to tune the uncertainties in the data,
depending on the aggregation function that is used.
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