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How do we generate data?

1. by observing (often: measuring)

2. by deriving:
I from observed data,
I or from derived data

Questions we asked ourselves:

A is dataset x equivalent to dataset y , and a proper input to
derivation z?

B how can we advertise derived dataset (e.g., inform to which
derivation is it a proper input)?

James Frew’s laws on metadata:

1. scientists don’t write metadata

2. any scientist can be forced to write bad metadata

Can, somehow, scientists be relieved from the task, but still
questions A and B be answered?
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How do scientists communicate data generation?
library("RandomFields")

###########################################

## SECTION 4: UNCONDITIONAL SIMULATION ##

###########################################

RFoptions(seed = 0, height = 4)

## seed=0: *ANY* simulation will have the random seed 0; set

## RFoptions(seed=NA) to make them all random again

## Fig. 1: linear model of coregionalization

M1 <- c(0.9, 0.6)

M2 <- c(sqrt(0.19), 0.8)

model <- RMmatrix(M = M1, RMwhittle(nu = 0.3)) +

RMmatrix(M = M2, RMwhittle(nu = 2))

x <- y <- seq(-10, 10, 0.2)

simu <- RFsimulate(model, x, y)

plot(simu)

## Fig. 2: Wackernagel's delay model

model <- RMdelay(RMstable(alpha = 1.9, scale = 2), s = c(4, 4))

simu <- RFsimulate(model, x, y)

plot(simu, zlim = 'joint')

## Fig. 3: extended Wackernagel's delay model

model <- RMdelay(RMstable(alpha = 1.9, scale = 2), s = c(0, 4)) +

RMdelay(RMstable(alpha = 1.9, scale = 2), s = c(4, 0))

simu <- RFsimulate(model, x, y)

plot(simu, zlim = 'joint')

# ToPDF("delay")

plot(model, dim = 2, xlim = c(-5, 5), main = "Covariance function",

cex = 1.5, col = "brown")

## Fig. 4: latent dimension model

## MARGIN.slices has the effect of choosing the third dimension

## as latend dimension

## n.slices has the effect of choosing a bivariate model

model <- RMgencauchy(alpha = 1.5, beta = 3)

simu <- RFsimulate(model, x, y, z = c(0,1))

plot(simu, MARGIN.slices = 3, n.slices = 2)



Algebra

basic notions:

I basic types with reference systems

I data generation types (functions)

I data derivation
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Are phenomena discrete, or continuous?
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How do values refer to regions?

value = constant value = aggregate
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Basic Reference System types
Basic reference system types and simple derivations thereof. Each type needs
to go along with its reference system (RS).

P denotes the power set (set of all subsets).
Symbol Definition Meaning Description

S R
3 Set of possible spatial locations with RS.

T R Set of possible moments in time with RS.
D N Set of possible discrete entity identifier with RS.
Q R Set of possible observed values with RS.
R S set P(S) Set of regions: bounded by polygons, or col-

lection of isolated locations and combinations
thereof.

I T set P(T ) Set of collections of moments in time: contin-
uous intervals or a set of moments in time or
combinations thereof.

D set D set P(D) Sets of object identifiers
Q set Q set P(Q) Sets of quality values.
bool {T,F} Boolean, also used to express predicates for se-

lection
Extent R × I R × I set of spatio-temporal extent as the orthogonal

product of the spatial and temporal projections
Occurs (S × T ) set P(S × T ) set of spatio-temporal subsets, occurrences of

events and objects, but also of certain values or
conditions in a field; footprint, support
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Data Generation Types

Symbol Type definition Description
Field S × T ⇒ Q spatio-temporal field
Lattice R ⇒ I ⇒ Q spatio-temporal lattice
Event D ⇒ S × T spatio-temporal events
Trajectory T ⇒ S trajectory
Objects D ⇒ T ⇒ S objects in time and space
LatticeT S ⇒ I ⇒ Q spatial temporal lattice
BlockEvent D ⇒ Extent events affecting a set of locations and lasting for

some time interval
RegionalTrajectory T ⇒ R trajectory of regions
BlockObjects D ⇒ I ⇒ R objects in space and time defined over regions

and collections of moments in time
... ... ...
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Data derivation
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Data derivation: generating field data
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Data derivation: spatial/temporal aggregation

see paper for definitions of curry, aggl, aggT and settop
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Data derivation: deriving objects from fields
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Discussion & Conclusions

I In order to be able to make meaningful inferences and type
checking, we need to handle data at the level of fields, events,
objects, lattices; handling them as points, lines, polygons,
grids is not enough

I despite all data being discrete, our algebra distinguishes
continuous from discrete phenomena

I the algebra makes explicit how values relate to {regions, time
intervals} (constant? aggregate?)

I reproduction scripts convey syntax, but often little semantics

I R is written by scientists, and can be written to generate
derivation graphs (w.i.p.)

I OWL DL (meaning: LOD) cannot make inference on
functions of functions; higher order logic is needed for this.
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