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How large should a sample be?

Given that a 95% confidence interval, e.g. for µ is obtained by

[X̄ − tdf ,αSE, X̄ + tdf ,αSE]

and given that α is chosen and σ is not under our control, we can
only control the width W of the interval by manipulating n:

W = 2tdf ,αSE = 2tdf ,αs/
√

n

n = (
2tdf ,αs

W
)2

How about controlling type II errors?
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Type I and Type II errors

Of course we take a risk to wrongly rejecting a true H0, of α.
There’s however also a risk that we wrongly not reject a false H0,
which is called β.

Truth
Test result H0 true H0 false

Reject H0 Type I error, α OK, (1-β)

Do not reject H0 OK (1-α) Type II error, β

Next 2 slides from: Wonnacott & Wonnacott, Introductory
statistics.







How to compute the power function?

I Given that H0 is not true, then what is true? Probabilities
cannot be computed without assumptions about the
population.

I Given a fixed HA, we can compute power as in the figure in
the previous slide.

I For all possible HA’s, we obtain the power function.
I What determines the power?

I The difference between the H0 and HA means (delta)
I The width of the curves (SE = σ/

√
n)

I α
I where is α? – one-sided or two-sided
I what is n? how is SE computed? – type of test: one-sample,

two-sample, paired
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Power computation using power.t.test

Description: Compute power of test, or determine parameters to
obtain target power.
Details: Exactly one of the parameters n, delta, power, sd, and
sig.level must be passed as NULL, and that parameter is
determined from the others. Notice that the last two have
non-NULL defaults so NULL must be explicitly passed if you want
to compute them.



Compute sample size

> power.t.test(n = NULL, delta = 1, sd = 1, sig.level = 0.05,

+ power = 0.9, type = "two.sample", alternative = "two.sided")

Two-sample t test power calculation

n = 22.02110

delta = 1

sd = 1

sig.level = 0.05

power = 0.9

alternative = two.sided

NOTE: n is number in *each* group



Compute delta (HA)

> power.t.test(n = 20, delta = NULL, sd = 1, sig.level = 0.05,

+ power = 0.9, type = "two.sample", alternative = "two.sided")

Two-sample t test power calculation

n = 20

delta = 1.051970

sd = 1

sig.level = 0.05

power = 0.9

alternative = two.sided

NOTE: n is number in *each* group



Compute power

> power.t.test(n = 20, delta = 1, sd = 1, sig.level = 0.05,

+ power = NULL, type = "two.sample", alternative = "two.sided")

Two-sample t test power calculation

n = 20

delta = 1

sd = 1

sig.level = 0.05

power = 0.8689528

alternative = two.sided

NOTE: n is number in *each* group



Compute significance level

> power.t.test(n = 20, delta = 1, sd = 1, sig.level = NULL,

+ power = 0.9, type = "two.sample", alternative = "two.sided")

Two-sample t test power calculation

n = 20

delta = 1

sd = 1

sig.level = 0.07004584

power = 0.9

alternative = two.sided

NOTE: n is number in *each* group

(Note that this is of little operational use; computing sd is of even
less operational use)



Compute power function vs. delta, n = 20
> plot((0:20)/10, power.t.test(power = NULL, delta = (0:20)/10,

+ n = 20)$power, type = "l", xlab = "delta", ylab = "power")
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Compute power function vs. n; delta = 1
> plot(1:50, power.t.test(delta = 1, n = 1:50)$power, type = "l",

+ xlab = "n (sample size)", ylab = "power")
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The power concept beyond n

In a testing framework, increasing n will make every small
difference in means significant, as small differences will be noted
(with large power). This does not mean that the difference found
is relevant.
Suppose we’re studying the effect of a medication type on health,
or a herbicide type on plant disease. Two large samples (with and
without treatment) confirmed (showed significantly) that in the
group without treatment there was 45% succes, less than in the
group with treatment with 47% success.
That’s OK, but should we now collectively apply the treatment?
Do the effects compensate for the costs and side effects?

Significance is something else as relevance
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The power concept beyond n

Taking a larger sample always increases power. Can we do
something else to increas power? Yes: choose a more appropriate
analysis. Recall the paired data of lecture 7:

obj t1 t2

1 13.5 12.7
2 15.3 15.1
3 7.5 6.6
4 10.3 8.5
5 8.7 8.0

> x1 = c(13.5, 15.3, 7.5, 10.3, 8.7)

> x2 = c(12.7, 15.1, 6.6, 8.5, 8)

> x1 - x2

[1] 0.8 0.2 0.9 1.8 0.7



> t.test(x1, x2, var.equal = TRUE)

Two Sample t-test

data: x1 and x2

t = 0.4066, df = 8, p-value = 0.695

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-4.111314 5.871314

sample estimates:

mean of x mean of y

11.06 10.18

> t.test(x1, x2, paired = TRUE)

Paired t-test

data: x1 and x2

t = 3.3896, df = 4, p-value = 0.02754

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

0.1591929 1.6008071

sample estimates:

mean of the differences

0.88



> power.t.test(delta = 0.88, n = 5, sd = sqrt((var(x1) +

+ var(x2))/2))

Two-sample t test power calculation

n = 5

delta = 0.88

sd = 3.422353

sig.level = 0.05

power = 0.0548756

alternative = two.sided

NOTE: n is number in *each* group

> power.t.test(delta = 0.88, n = 5, sd = sd(x1 - x2), type = "paired")

Paired t test power calculation

n = 5

delta = 0.88

sd = 0.580517

sig.level = 0.05

power = 0.7192318

alternative = two.sided

NOTE: n is number of *pairs*, sd is std.dev. of *differences* within pairs



Two-sample T-test and analysis of variance.
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Generalizing 2 to p groups: from t to F
I let n1 = n2 = n and N = n1 + n2, and assume σ1 = σ2

I t = X̄1−X̄2

s/
√

n
= (X̄1−X̄2)

√
n

s

I t2 = (X̄1−X̄2)2n
s2 = nVar(X̄i )

s2

I nVar(X̄i )
s2 , with s2 the pooled (averaged, joined) within-group

variance
I numerator: variance, as obtained from variability between

groups (group means)
I denominator: variance, as obtained from variability within

groups (ignores differences between groups)
I Under the hypothesis H0 : µ1 = µ2 = ... = µp,

F =
nVar(X̄i )

s2

follows the F distribution with p − 1 (numerator) and N − p
(denominator) degrees of freedom.

This idea generalizes the two-sample t-test, testing H0 : µ1 = µ2 to
the F-test, testing H0 : µ1 = µ2 = ... = µp.
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Why not use many t-tests?

I Suppose we have three groups, and we can reject
H0 : µ1 = µ2, we can reject H0 : µ2 = µ3, but cannot reject
H0 : µ1 = µ3.
This will be clumsy to explain.
When hypothesis H0 : µ1 = µ2 = µ3 can be rejected, we can
continue under the model ”the group means differ
significantly”.

I Suppose we have many (10) groups with few observations (3)
each. Pairwise testing has very little power (df = 4), whereas
joint testing with ANOVA has (df = 20).
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How to read ANOVA tables?

> summary(aov(Length ~ Gender))

Df Sum Sq Mean Sq F value Pr(>F)

Gender 1 4017.1 4017.1 45.466 1.845e-09 ***

Residuals 84 7421.8 88.4

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Gender: effect, explanatory variable, grouping variable, between
groups
Residuals: error, within-groups, unexplained variability
Df: degrees of freedom for that row
Sum Sq: sum of squares, between or within
Mean Sq: mean squares: Sum Sq divided by Df
F value: Mean Sq effect divided by Mean Sq Residuals
Pr(>F): significance level, p-value



> plot(aov(Length ~ Gender), which = 1)

> Length[31]

[1] 220
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> plot(aov(Length ~ Gender), which = 2)
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> plot(aov(Length ~ Gender), which = 3)
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Two-way ANOVA; setting up data

The data can also be organized like this:

> x = data.frame(resp = c(x1, x2), time = rep(c("t1", "t2"),

+ each = 5), obj = rep(letters[1:5], 2))

> x

resp time obj

1 13.5 t1 a

2 15.3 t1 b

3 7.5 t1 c

4 10.3 t1 d

5 8.7 t1 e

6 12.7 t2 a

7 15.1 t2 b

8 6.6 t2 c

9 8.5 t2 d

10 8.0 t2 e



Two-way ANOVA

One-way ANOVA:

> summary(aov(resp ~ time, x))

Df Sum Sq Mean Sq F value Pr(>F)

time 1 1.936 1.936 0.1653 0.695

Residuals 8 93.700 11.712

Two-way ANOVA:

> summary(aov(resp ~ time + obj, x))

Df Sum Sq Mean Sq F value Pr(>F)

time 1 1.936 1.936 11.490 0.0275393 *

obj 4 93.026 23.256 138.021 0.0001545 ***

Residuals 4 0.674 0.169

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



Paired t-test vs two-way ANOVA
Paired t-test:
> t.test(x1, x2, paired = TRUE)

Paired t-test

data: x1 and x2

t = 3.3896, df = 4, p-value = 0.02754

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

0.1591929 1.6008071

sample estimates:

mean of the differences

0.88

Two-way ANOVA:
> summary(aov(resp ~ time + obj, x))

Df Sum Sq Mean Sq F value Pr(>F)

time 1 1.936 1.936 11.490 0.0275393 *

obj 4 93.026 23.256 138.021 0.0001545 ***

Residuals 4 0.674 0.169

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



Paired t-test vs. two-way ANOVA

Note: p-values are identical. Anova generalizes paired t-tests in
the sense that e.g. time can have more than 2 levels (but is
considered categorical).
Further extensions: three-way, more-way anova; interactions.
Now introduce the meuse data set
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