
Introduction to Geostatistics
6. Sampling: strategies, point estimation, confidence intervals

Edzer Pebesma

edzer.pebesma@uni-muenster.de

Institute for Geoinformatics (ifgi)
University of Münster

May 18, 2010

Sampling

Sampling can be

I Random (any population elements can enter the sample with
a given, non-zero probability)

I Non-random (population elements enter the sample with an
unknown, or with zero probability)



Examples of non-random sampling

Three examples:

I no random process was used to generate the sampling
locations

I part of the area had zero inclusion probability.
Suppose we want to sample vegetation in NRW. For this, we
choose 100 sites randomly, but in forests only. We can now
estimate e.g. which fraction of the NRW forests are deciduous
(population: forests in NRW), but we cannot estimate which
area of NRW consists of forests (population: all of NRW; the
non-forest locations had zero inclusion probability in the
sample.)

The question remains what to do when a particular sample could
have come from a random process, but didn’t.

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+ +

+

+

+

x-coordinate

y-
co

or
di

na
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

simple random sampling, n = 25 , blocks = 1



Simple random sampling (1)

> plot(nrw, col = "lightgrey")

> pts = spsample(nrw, 100, "random")

> points(pts, pch = 3)

Simple random sampling (2)

> plot(nrw, col = "lightgrey")

> pts = spsample(nrw, 100, "random")

> points(pts, pch = 3)



Simple random sampling (3)

> plot(nrw, col = "lightgrey")

> pts = spsample(nrw, 100, "random")

> points(pts, pch = 3)

Simple random sampling (4)

> plot(nrw, col = "lightgrey")

> pts = spsample(nrw, 100, "random")

> points(pts, pch = 3)



Simple random sampling (5)

> plot(nrw, col = "lightgrey")

> pts = spsample(nrw, 100, "random")

> points(pts, pch = 3)

Properties and strategy

with simple random sampling,

I every element has identical probability to enter the population

I every point is drawn independently from the others

I as the number of points in an area is infinite, replacement is
not an issue (in theory; in practice, the choice may be quite
constrained)

I this makes the sample elements completely independent (in a
design-based perspective).

I How to do this? For an area A, consider its bounding box B.
For n points, repeat

1. draw a uniform random coordinate x ′ from the x-range of B
2. draw a uniform random coordinate y ′ from the y -range of B
3. accept (x ′, y ′) if it is inside (or on) A (point-in-polygon)

until we have accepted n points



Other spatial sampling approaches

I Random sampling over another agent then space: (e.g. if you
randomly sample people, the spatial pattern of selected
persons will follow the population density pattern.)

I Spatial random sampling that uses map information to vary
densities (e.g., for a bird inventory sample forest locations
with 0.05 pts/km, agricultural locations with 0.01 pts/km,
urban areas with 0.005 pts/km; density may depends on
expected variety and viewing conditions)

I Spatially homogeneous, but non-simple random sampling
(Ripley, 1981, Spatial Statistics):

I Stratified random sampling
I Regular (systematically aligned) sampling
I Non-aligned random sampling
I Clustered sampling

+

+

+ + +

+
+

+ +

+

+

+
+ + +

+

+

+

+

+

+ +

+ +
+

x-coordinate

y-
co

or
di

na
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

stratified random sampling, n = 25 , blocks = 5



Stratified random sampling (1)

> plot(nrw, col = "lightgrey")

> pts = spsample(nrw, 100, "stratified")

> points(pts, pch = 3)

Stratified random sampling (2)

> plot(nrw, col = "lightgrey")

> pts = spsample(nrw, 100, "stratified")

> points(pts, pch = 3)



Stratified random sampling (3)

> plot(nrw, col = "lightgrey")

> pts = spsample(nrw, 100, "stratified")

> points(pts, pch = 3)

Stratified random sampling (4)

> plot(nrw, col = "lightgrey")

> pts = spsample(nrw, 100, "stratified")

> points(pts, pch = 3)



Stratified random sampling (5)

> plot(nrw, col = "lightgrey")

> pts = spsample(nrw, 100, "stratified")

> points(pts, pch = 3)

Stratified random sampling

Approach:

I Put a lattice over the area, with (approximately) n cells

I Randomly sample one point in each cell

I Number of random coordinates: n, constrained to one per
lattice cell



+ + + + +

+ + + + +

+ + + + +

+ + + + +

+ + + + +

x-coordinate

y-
co

or
di

na
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

systematic aligned sampling, n = 1 , blocks = 5

Systematically aligned random sampling (1)

> plot(nrw, col = "lightgrey")

> pts = spsample(nrw, 100, "regular")

> points(pts, pch = 3)



Systematically aligned random sampling (2)

> plot(nrw, col = "lightgrey")

> pts = spsample(nrw, 100, "regular")

> points(pts, pch = 3)

Systematically aligned random sampling (3)

> plot(nrw, col = "lightgrey")

> pts = spsample(nrw, 100, "regular")

> points(pts, pch = 3)



Systematically aligned random sampling (4)

> plot(nrw, col = "lightgrey")

> pts = spsample(nrw, 100, "regular")

> points(pts, pch = 3)

Systematically aligned random sampling (5)

> plot(nrw, col = "lightgrey")

> pts = spsample(nrw, 100, "regular")

> points(pts, pch = 3)



Systematically aligned (regular) random sampling

Approach:

I Put a lattice over the area, with (approximately) n cells

I Randomly sample one point in the first cell

I Take the same point in all the other cells

I Number of random coordinates: 1

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+ +

+

x-coordinate

y-
co

or
di

na
t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

clustered sampling, n = 125 , blocks = 5 , clusters = 5



Clustered sampling

Possible approach:

I Sample n lattice cells at random,

I Within each lattice cell select m points at random

I results in a sample of size nm

I alternatives: we could apply regular sampling or stratfied
sampling within the selected lattice cells

I advantage: travel time

I disadvantage: less efficient: suppose the lattice cells are very
small, we may end up with effectively the same information as
n single random points.

Alternative sampling methods:

I line sampling, where lines are placed at random (not e.g.
existing, such as roads)

I hybrid methods

Properties of the arithmetic mean

What about the mean value?

X̄ =
1

n

n∑
i=1

Xi =
1

n
(X1 + X2 + ...+ Xn)

EX̄ =
n∑

i=1

E(Xi ) =
1

n
(E(X1) + E(X2) + ...+ E(Xn))

=
1

n
[µ+ µ+ ...+ µ] =

1

n
[nµ] = µ

What about it’s variability? If all observations are independent,
then

Var(X̄ ) = Var(
1

n

n∑
i=1

Xi ) =
1

n2

n∑
i=1

Var(Xi ) = σ2/n

with σ2 = Var(X )



Properties of the arithmetic mean, 2

Remember: standard error of X̄ , for independent observations is

SE =
σ√
n

I if n =∞, SE = 0 meaning that X̄ = µ.

I in other cases, the variability in the difference, X̄ − µ has
standard deviation SE

I ONLY if n = 1, SE = σ; this is the case where we take a
sample of size 1, and estimate the mean µ by this single value.

Confidence interval for the mean

If the difference X̄ − µ follows a normal distribution, we can e.g.
state that

Pr(X̄ − 1.96SE < µ < X̄ + 1.96SE) = 0.95

and form a 95% confidence interval for µ by

[X̄ − 1.96SE, X̄ + 1.96SE]

Note that in the above Pr() statement, randomness is associated
with X̄ , as this fluctuates from one sample to another, and not
with µ.
However, we still don’t know σ!



Point estimation vs interval estimation

I Point estimation is e.g. giving X̄ as an estimate of µ

I Obviously, we try always to give the “best” point estimate

I “best” usually has some mathematical connotation: least
squares, minimum variance, best linear, maximum likelihood,
maximum a-posteriory probability, ...

I A more complete picture is given by the interval estimate,
where we give the range of likely values for the target
parameter (e.g. µ), given sampling error

I this is usually done with a confidence interval that has a
certain probability coverage (e.g. 95%)

I probability refers to sampling error/repeated sampling, not to
the population parameter (such as µ)

Confidence intervals, σ known
We saw that

Pr(X̄ − 1.96SE < µ < X̄ + 1.96SE) = 0.95

and we can call this a 95% confidence interval.
The essence is that we have limited knowledge about µ, and this is
what we can say about it, based on sampling data.
Other probabilities can also be obtained. Let α be the probability
that the confidence interval does not cover the true value, in this
case 0.05.
zα/2 is the value of the standard normal curve below which α/2
probability lies. Then we obtain a confidence interval with 1− α
probability coverage by

[X̄ + zα/2SE, X̄ + z1−α/2SE]

(Note that zα/2 is negative.)
Values for α:

I α should be small, not larger than .1 for the word ”confidence”
to make sense

I Other values might be 0.1, 0.01, 0.001



Confidence intervals, σ known – example

A 99% confidence interval for Length, assuming σ = 11:

> load("students.RData")

> attach(students)

> m = mean(Length)

> sd = 11

> se = sd/sqrt(length(Length))

> alpha = 0.01

> c(m + qnorm(alpha/2) * se, m + qnorm(1 - alpha/2) * se)

[1] 175.7123 180.3548

> alpha = 0.05

> c(m + qnorm(alpha/2) * se, m + qnorm(1 - alpha/2) * se)

[1] 176.2673 179.7998

> alpha = 0.1

> c(m + qnorm(alpha/2) * se, m + qnorm(1 - alpha/2) * se)

[1] 176.5513 179.5158

Confidence intervals, σ unknown

What to do if σ is not known (and in real life, it isn’t)?
We know that if n is large, we can estimate σ quite well with the
sample standard deviation s. If however n is small, the
approximation is worse.
We need a distribution that is like the normal distribution, but
wider for smaller n. This is what the t-distribution does.

> sd = sqrt(var(Length))

> n = length(Length)

> se = sd/sqrt(n)

> alpha = 0.05

> c(m + qnorm(alpha/2) * se, m + qnorm(1 - alpha/2) * se)

[1] 176.2752 179.7919

> c(m + qt(alpha/2, n - 1) * se, m + qt(1 - alpha/2, n -

+ 1) * se)

[1] 176.2607 179.8064



t-distribution

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

dn
or

m
(x

)

normal
t, df=30
t, df=10
t, df=5

small sample size:

> L10 = Length[1:10]

> m = mean(L10)

> se = sqrt(var(L10)/10)

> c(m + qnorm(alpha/2) * se, m + qnorm(1 - alpha/2) * se)

[1] 159.7252 162.8748

> c(m + qt(alpha/2, 9) * se, m + qt(1 - alpha/2, 9) * se)

[1] 159.4824 163.1176

> L5 = Length[1:5]

> m = mean(L5)

> se = sqrt(var(L5)/5)

> c(m + qnorm(alpha/2) * se, m + qnorm(1 - alpha/2) * se)

[1] 158.4666 159.9334

> c(m + qt(alpha/2, 4) * se, m + qt(1 - alpha/2, 4) * se)

[1] 158.1611 160.2389


	Introduction

