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a b s t r a c t

Environmental issues such as air, groundwater pollution and climate change are frequently studied at
spatial scales that cross boundaries between political and administrative regions. It is common for dif-
ferent administrations to employ different data collection methods. If these differences are not taken
into account in spatial interpolation procedures then biases may appear and cause unrealistic results.
The resulting maps may show misleading patterns and lead to wrong interpretations. Also, errors will
propagate when these maps are used as input to environmental process models. In this paper we present
and apply a geostatistical model that generalizes the universal kriging model such that it can handle het-
erogeneous data sources. The associated best linear unbiased estimation and prediction (BLUE and BLUP)
equations are presented and it is shown that these lead to harmonized maps from which estimated biases
are removed. The methodology is illustrated with an example of country bias removal in a radioactivity
exposure assessment for four European countries. The application also addresses multicollinearity prob-
lems in data harmonization, which arise when both artificial bias factors and natural drifts are present
and cannot easily be distinguished. Solutions for handling multicollinearity are suggested and directions
for further investigations proposed.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Mapping environmental variables often requires assimilation of
data from multiple sources. Ideally, these data are collected using
the same, standardized methods in field and laboratory, irrespec-
tive of the source. However in practice, data are often collected in
different ways, particularly when they come from different political
or administrative regions. Hence, when data from different sources
are used for mapping purposes, resultant maps may be affected by
systematic differences between data collection protocols. Taking
the development of national and regional radioactivity monitor-
ing networks in the EU as an example, many different protocols
were implemented, using different measurement devices, site con-
ditions and data processing steps (Bossew et al., 2008). The problem
of data source heterogeneity is obviously not restricted to radia-
tion science, but concerns the environmental sciences in general.
For instance, data harmonization is an important issue in vegeta-
tion science (e.g. Bartholomeus et al., 2008), marine science (e.g.
Otuama and Hamre, 2007), forest science (e.g. Gold et al., 2006)
and soil science (e.g. Prechtel et al., 2009).

∗ Corresponding author. Tel.: +31 317482716; fax: +31 317419000.
E-mail address: gerard.heuvelink@wur.nl (G.B.M. Heuvelink).

It is well known that different protocols complicate the joint use
of disparate datasets in statistical models (Gego et al., 2005; Herold
et al., 2006), and that preprocessing is required before different
datasets are merged. Standardization is the prevailing approach,
as concluded in inter-comparison studies that examined field pro-
tocols in various environmental risk assessment fields (Wagner
et al., 2001; Parr et al., 2002; Schröder et al., 2006). Standardiza-
tion implies that all parties involved agree on the methods used
for data collection. When standardization is unfeasible or has been
only partly achieved, harmonization is a complementary procedure
to correct the data after they have been collected. Harmonization
can be viewed as a “bottom-up approach” that should result in a
state of comparability between data from different sources (Köhl
et al., 2000). Harmonization of different measurement techniques
generally involves calibration models that include constant and
random measurement errors (Osborne, 1991). Both components
must be addressed. Furthermore, detailed information on data col-
lection and measurement specifications such as meta-data in a GIS
(Schröder et al., 2006) is of beneficial use in the development of a
harmonization procedure.

The objective of this research is to address the harmonization
problem by taking into account both random and systematic mea-
surement errors in a geostatistical framework. The methodology
is applied to the mapping of radioactivity exposure across Europe,

0303-2434/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
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using data from the European-wide data exchange platform (EUR-
DEP – http://eurdep.jrc.it/). The EURDEP data include measurement
biases that may have several origins, such as differences in device
type, site specifications and sampling protocols. As a result, the dif-
ference between two measurements at the same point in time at
two different locations includes natural spatial variation in the phe-
nomenon itself as well as systematic and random measurement
errors. These errors should not appear in the final map as these will
not reflect the true phenomenon of radioactivity dose rates.

The remainder of this paper is organized as follows. First, we
introduce a statistical model in which measurements are a linear
combination of the true state, a systematic measurement error,
and a random error component. The state equation decomposes
the true state into a structural part (e.g., the natural drift or
trend) and a spatially correlated residual. Second, we describe
the geostatistical harmonization procedure which optimally esti-
mates the trend component and makes spatial predictions of the
targeted environmental variable. Third, we illustrate the method
with a real-world case study of mapping radioactivity exposure
measures. We conclude with a discussion on the issue of multi-
collinearity between the bias and natural trend components and
its influence on estimation precision, and a discussion on the
future developments of our approach, which might generalize
systematic harmonization procedures in geostatistical assessment
studies.

2. Geostatistical formulation of the harmonization problem

When dealing with measured data of an environmental phe-
nomenon in the context of random and systematic measurement
errors, geostatistical model building requires three distinct steps.
First, the phenomenon itself is modelled by defining a state equa-
tion that defines the relationship between the target variable and
its covariates, and that includes a stochastic residual. The spa-
tial dependence structure of the stochastic residual must also be
described. Second, the relationship between the target variable
and its measurement is described. Third, measurement biases are
related to measurement artifacts. These three steps are described
in the next subsections.

2.1. State equation

Consider a phenomenon z over a spatial domain D ⊂ Rk, k ≥ 2
that we want to map. z is accessible at locations {si ∈ D, i = 1, . . .,
n}. In geostatistics the values {z(si)} are treated as outcomes of a
random field {Z(s), ∀ s ∈ D}, which is characterized by a joint prob-
ability distribution. Commonly, Z is described as the sum of a mean
function m and a stochastic residual ı, expressed as:

Z(s) = m(s) + ı(s). (1)

The mean function m is known as the trend or drift; ı is a zero-
mean error term, assumed intrinsically stationary. In many cases
trend functions are described through a linear model (Chilès and
Delfiner, 1999):

m(s) = Fa(s)a + F˛(s)˛, (2)

where F(s) = [Fa(s) F˛(s)] is a vector of trend component values at
location s; Fa(s) represents the components for which associated
parameter coefficients a are known; F˛(s) represents the vector of
components for which coefficients ˛ must be estimated from the
data.

In this setting the trend components may refer to both contin-
uous and categorical explanatory variables that are traditionally
included in external drift modelling. In the F(s) vector, the entry
for each categorical independent variable is usually translated into

as many binary dummy entries as there are categories, minus one
(but see below for an alternative approach).

2.2. Measurement equation

The phenomenon modelled with the state variable z is only
accessible through measurements y(si) at locations {si ∈ D, i = 1, . . .,
n}. To distinguish between the true state and measurement of the
true state, we define a measurement error term e(si) such that:

y(si) = z(si) + e(si). (3)

The exact values of the measurement errors e(si) are typically
not known. However, the degree of variation in the random error
component of e and the factors that impact measurement errors
are often reasonably well known. Thus, the e(si) may be treated
as outcomes of random variables whose probability distributions
are known. Hence, we define random functions Y and ε over D,
associated with both measured and measurement error variables.
Often referred to as the measurement equation (e.g. Cressie, 1993),
we write:

Y(si) = Z(si) + ε(si). (4)

2.3. Error equation

The measurement error ε(si) can be divided into systematic
measurement errors (e.g. biases) and random measurement errors.
As with natural drifts, some measurement biases may have a known
value – the bias is valid for a certain type of sensor for instance.
In the more usual case measurement biases will be unknown,
but they can be related to specific factors, categories or time
periods, and estimated from the data. In addition to systematic
errors, we assume a random measurement error (Christensen,
1991; Marcotte, 1995). The multiple error components can be rep-
resented as follows:

ε(si) = Gb(si)b + Gˇ(si)ˇ + �(si), (5)

where G(si) = [Gb(si) G�(si)] is a vector of measurement biases at
location si; Gb(si) represents bias factors for which we know the
coefficients b; Gˇ(si) stands for bias factors whose coefficients ˇ
must be estimated. � is a zero-mean random measurement error
component.

2.4. Harmonization model

We define a harmonization model at measurement locations si
combining Eqs. (1), (2), (4) and (5):⎧⎪⎨⎪⎩

Z = Faa + F˛˛ + ı,

Y = Z + ε,

ε = Gbb + Gˇˇ + �.

(6)

To complete the definition of the geostatistical harmoniza-
tion model we assume that the stochastic residual ı and random
measurement error � are normally distributed and mutually uncor-
related. The variance–covariance matrices of ı and � at the n
observation locations are denoted as:{

V = Var(ı),

W = Var(�).
(7)

3. Best linear unbiased estimation and prediction in the
heterogeneous case

In order to predict Z at unmeasured locations, we compute the
conditional distribution of Z at location sn+1 given observations
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y(si):

FZ (z; sn+1) = P(Z(sn+1) ≤ z|y(si), i = 1, . . . , n). (8)

We first separate out the known part of the drift in Eq. (6):

Y − (Faa + Gbb) = F˛˛ + Gˇˇ + ı + �. (9)

Defining U = Y − (Faa + Gbb) and � = ı + � leads to:

U = X� + �, (10)

where

X = [F˛ Gˇ] and � =
[

˛
ˇ

]
.

The statistical moments of U satisfy:{
E(U) = X�,

Var(U) = V + W.
(11)

3.1. Best linear unbiased estimation of �

Estimation of � from the observations that satisfy Eq. (10) is a
classical problem of multiple linear regression. We estimate the
parameters � in the same manner as Christensen (1991),⎧⎪⎪⎨⎪⎪⎩

�̂ =
[

ˆ̨

ˆ̌

]
= (X′(V + W)−1X)

−1
X′(V + W)−1U,

Var(�̂) = (X′(V + W)−1X)
−1

.

(12)

The ′ indicates the transposition operator. This solution is the
best linear unbiased estimate (BLUE) with the smallest estimation
error variance. In cases where one or more covariates of Eq.(10)
are categorical, the traditional approach to avoiding multicollinear-
ity in dummy variables is to delete redundant categories from
each categorical variable (Searle, 1997). An alternative approach
is to impose the constraint that the dummy parameters for each
categorical covariate sum to zero (Suits, 1957). This simplifies inter-
pretation of the estimated parameters, which is particularly useful
in cases where the regression equation contains several categorical
variables.

3.2. Identification of variance–covariance matrices

The covariance matrix of random measurement errors W may be
based on repeated measurements using the same device or based
on expert knowledge. Assuming that random measurement errors
have constant variance and are mutually independent, W is a diago-
nal matrix W = �2

MI, where �2
M is the variance of the measurement

errors. The assumption of constant measurement error variance
is implausible if different device types have different measure-
ment errors, or if the measurement locations differ in their level of
compliance with site specifications (Zähringer and Sempau, 1996;
Bossew et al., 2008). In such a case it is more realistic to consider that
W bears individual measurement error variances along its diagonal.

Estimation of the stochastic residual covariance matrix V is
hampered by the fact that estimation of V requires the model coeffi-
cients � to be known, while estimation of � requires V as in Eq. (12).
This “chicken and egg” problem (Armstrong, 1984) can be solved
using an iterative procedure. The first estimate of � is carried out
with ordinary least squares (OLS), which is equivalent to substitut-
ing V with the identity matrix I. Residuals can then be computed
and serve as an initial data set for estimation of V. This estimate
is then used to re-compute preliminary generalized least squares
(GLS) estimates for �. Repeated iteration yields new estimates of
both � and V until convergence.

3.3. Best linear unbiased prediction of Z

After BLUE estimates of model parameters

� =
[

˛
ˇ

]
,

are computed, we proceed to spatial prediction by applying kriging,
also known as best linear unbiased prediction (BLUP). Because the
system is normally distributed, optimal prediction of the process
at an unobserved location is linear in the observations, which can
be expressed as:

Ẑ(sn+1) = p + Fa(sn+1)a + F˛(sn+1) ˆ̨

+ q′(Y − Faa − F˛ ˆ̨ − Gbb − Gˇ
ˆ̌ ), (13)

where the known and estimated biases have been subtracted from
the measurement vector because these affect the measurements
but not the true state of the process. The scalar p and the vector q
must be chosen such that the three key properties of BLUP (i.e. best,
linear and unbiased) are satisfied.

Linearity is a property of the predictor by construction. Unbi-
asedness requires that:

E[Ẑ(sn+1)] = E[Z(sn+1)]. (14)

Evaluating the expected values leads to:

p + Fa(sn+1)a + F˛(sn+1)E[ ˆ̨ ]

+ q′(E[Y] − Faa − F˛E[ ˆ̨ ] − Gbb − GˇE[ ˆ̌ ])

= Fa(sn+1)a + F˛(sn+1)˛. (15)

From the BLUE expression properties, we have
E[ ˆ̨ ] = ˛ and E[ ˆ̌ ] = ˇ, and from the model definition
E[Y] = Faa + F˛˛ + Gbb + Gˇˇ. Hence,

E[Y] − Faa − F˛˛ − Gbb − Gˇˇ = 0, (16)

so that

p = 0. (17)

The kriging variance is given by the quadratic form:

E[(Ẑ(sn+1) − Z(sn+1))
2
] = E[(c + q′d)2], (18)

where c and d are given by:{
c = F˛(sn+1)( ˆ̨ − ˛) + ı(sn+1),

d = X(� − �̂) + �.
(19)

Minimizing the kriging variance by setting the derivative of Eq.
(18) with respect to q to zero gives:

E[d′d]q + E[c d] = 0. (20)

Substituting c and d and the estimates from Eq. (12) yields:

[X(X′(V + W)−1X)
−1

X′ − (V + W)]q

= [X(X′(V + W)−1X)
−1

X′ − (V + W)](V + W)−1Cov(ı, ı(sn+1)).

(21)

Hence q = (V + W)−1v′
n+1, with vn+1 = Cov(ı(sn+1), ı). As a result

the harmonized BLUP prediction of Z is:

Ẑ(sn+1) = F(sn+1)

[
a
ˆ̨

]
+ (V + W)−1v′

n+1

(
Y − F

[
a
ˆ̨

]
− G

[
b
ˆ̌

])
.

(22)



Author's personal copy

412 O. Baume et al. / International Journal of Applied Earth Observation and Geoinformation 13 (2011) 409–419

Fig. 1. External drifts of background gamma dose rates (GDR). Top map: soil map with GDR measurement locations. Bottom map: elevation with country borders.

The prediction result (Eq. (22)) has two terms. The first cor-
responds to the trend value of the state variable Z(sn+1). The
second term is the interpolated residual, computed from the mea-
surements. Note the differences with classical kriging – i.e. the
homogeneous case where all data are from the same network and
G ≡ 0 and W ≡ 0.

The prediction error variance associated with the predictor is
given by:

Var(Z(sn+1) − Ẑ(sn+1)) = Var(Z(sn+1)) − 2�′vn+1 + �′(V + W)�,

(23)

where

�′ = F˛(sn+1)(F′
˛(V + W)−1F˛)

−1
F′

˛(V + W)−1

+ q′(I − X(X′(V + W)−1X)
−1

X′(V + W)−1).

As can be seen from the BLUE expression (Eq. (12)), the drifts and
heterogeneities are estimated from the overall covariance matrix
(V + W). However, the prediction takes the overall (co)variance
of the process only partially into account. In particular, the krig-
ing weights q include only the covariance of the state variable
Cov(ı(sn+1), ı). If the variance of the random measurement error
component is large, this will decrease q and result in a prediction
value that is closer to the trend.

4. Real world example – mapping gamma dose rate at the
European scale

Since the Chernobyl release in 1986, European countries have
set up various networks to assess radioactivity levels and to design
early warning systems. These national networks are heterogeneous
in terms of density, design, and data handling. At the continen-
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Fig. 2. Gamma dose rate (GDR) from EURDEP data (monthly average in December 2006) Top left: distribution of observed GDR versus country code. Top right: distribution
of residuals (after natural drifts were removed) versus country code. Bottom: distribution of variogram estimation weights versus country code.

tal scale initiative was taken to centralize these national databases
in the form of the European Radiological Data Exchange Platform
(EURDEP) (De Cort and De Vries, 1997). The goal of this database
is to provide data for routine and alert modes. The routine mode
assesses background radioactivity levels. Alert mode is used to
detect an unexpected release of radioactivity within a given amount
of time. Data harmonization in an alert setting is beyond the scope
of this paper as we focus on background monitoring of environ-
mental data in the general case.

Background radioactivity comes from a combination of differ-
ent sources. In our example application, we deal with gamma dose
rate (GDR) measurements. GDR measurements integrate radioac-
tive decay products over a wide variety of nuclides and GDR is
therefore equivalent to a global measure of radioactivity. The com-
mon physical unit for GDR over time is nSv/h (nano Sievert per

hour). The main factors to be accounted for are terrestrial radiation,
cosmic radiation, and atmospheric washout from rainfall events. In
a background situation, observations can be significantly affected
by a variety of measurement biases related to site specification,
device type, data handling, and the general standards employed
individually by countries and regional networks. Thus it is neces-
sary to harmonize the data when mapping radioactivity exposure
at a European scale.

4.1. Filtering a country membership effect

We refer to Szegvary et al. (2007) for more details on radioactiv-
ity measurements in general and Bossew et al. (2008) for a detailed
inventory of heterogeneity sources. Despite extensive efforts to
describe and eliminate differences between networks, there are

Fig. 3. Gamma dose rate (GDR) from EURDEP data (monthly average in December 2006): quantile–quantile plot of the residuals of the linear model – Classical UK (left) and
Harmonized Kriging (right) against the normal distribution.
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Fig. 4. Gamma dose rate (GDR) from EURDEP data (monthly average in December 2006): sample variogram of the residuals: Classical UK model (left) and Harmonized Kriging
model (right).

still heterogeneities unaccounted for. For example, one source of
heterogeneity is the so-called inherent background or self-effect
of the probe, which refers to the radiation value that the probe
reports when the true radiation is in fact zero. Self-effects depend
on probe type and manufacturer, and although this source of
heterogeneity may account for a high percentage of measured
background GDR, self-effect data are not available for all coun-
tries.

We map GDR in four countries – Austria (AT), the Czech Republic
(CZ), Italy (IT) and Switzerland (CH), based on monthly observa-
tions reported in the EURDEP database. In total, there are 471
measurement locations contained within these four countries.
We assume that all network heterogeneities can be explained
by country membership given that measurement devices are
typically standardized within individual countries. In this case,
the artefact of heterogeneity appears as a single factor: the
country code. Country code is an indicator of bias in the data,
although for instance, device type and site specification both
have a large impact as well and should be distinguished in the
analysis. As mentioned, a substantial part of the bias caused by
device type and site specification will be captured by country
code as most countries have standardized their internal proce-
dures.

4.2. Harmonization model of EURDEP data

True background GDR is represented by a state equation that
accounts for two natural drifts: soil type and cosmic radiation. Soil
type is an important factor because it accounts for differences in
terrestrial radioactivity and monthly temporal interactions with
rainfall washout effects. Cosmic radiation depends on air pressure
and altitude and can be accurately described by a physically-based
deterministic model. A recent German study reported the statistical
relationship between altitude above sea level and cosmic radiation,
using airborne measurements (Wissmann et al., 2007). We will use
their empirical model to estimate elevational differences in cosmic
radiation as follows:

FElevation(h) = 6.22 exp(−0.001051 h) + 26.91 exp(0.0004103 h),

(24)

expressed in nSv/h and where elevation h is measured in meters.
This formula applies to a certain type of gamma dose rate probe
only (the Geiger–Müller GS05, largely used in Germany). For other
device types, other empirical models were developed (Szegvary
et al., 2007).

Table 1
Estimate and standard deviation of parameters (nSv/h) for Classical UK and Harmonized Kriging – n represents the number of measurements in each class.

Classical UK Harmonized Kriging n

Estimate Std. dev. Estimate Std. dev.

Austria (AT) – – −17.5 3.2 329
Switzerland (CH) – – 8.9 4.1 53
Czech Republic (CZ) – – 7.2 3.9 53
Italy (IT) – – 1.4 3.7 36

Water surface and glacier −0.7 5.2 −2.1 3.9 23
Alluvial deposits 3.2 4.1 2.1 2.6 94
Calcareous rocks −0.2 4.2 −0.6 2.7 80
Clayey materials −19.3 10.2 −20.6 8.7 4
Sandy materials −5.2 7.1 −6.4 5.9 11
Loamy materials 4.3 4.2 4.4 2.5 113
Detrital formations 1.9 10.8 5.7 9.3 3
Crystalline rocks 8.2 4.2 9.3 2.6 109
Volcanic rocks 9.8 4.9 10.6 3.5 31
Other rocks −1.9 10.2 −2.3 8.8 3

Intercept 69.9 – 72.0 2.9 471
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Fig. 5. Gamma dose rate (GDR) from EURDEP data (monthly average in December 2006): maps applying Classical UK (top) and Harmonized Kriging (bottom). Right hand
panels show an enlarged portion of the Austrian–Czech border with measurement locations.

Soil effects are included in the trend model as a set of categor-
ical dummy covariates. The effect of soil on GDR is not adequately
known although Hiemstra et al. (2009) examined the effect of soil
on GDR at a national scale in the Netherlands. The soil classification
we use is extracted from the European soil database and describes
only 10 soil classes (http://eusoils.jrc.it/ESDB Archive/ESDBv2/).
Fig. 1 presents the soil and elevation maps that are included as
natural drifts in the model.

In this paper we analyze monthly GDR averages in the EURDEP
database for December, 2006. This implies that we study back-
ground situations where meteorology has an average influence on
the spatial variation of radioactivity exposure. Thus we assumed

only two natural covariates of GDR implemented in the following
model:{

U = Y − FElevation · 1,

U = FSoil ˛Soil + GCountry ˇCountry + �,
(25)

following the notation in Sections 2 and 3.
The spatial density of EURDEP monitoring stations varies greatly

between countries. This highly affects the efficiency of variogram
estimation because the sample variogram is dominated by observa-
tions from countries with a dense network. Therefore we computed
a robust weighted form of the variogram of residuals. At each
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iteration in the estimation procedure for ˛Soil and ˇCountry, the vari-
ogram was computed with a formulation as suggested by Rivoirard
et al. (2000). Introducing a weight wi associated with the residual
values �(si) at measurement locations si, the sample variogram is
estimated as:

�w(h) = 1
2N(h)

∑
h−ıh<|si−sj |<h+ıhwiwj|�(si) − �(sj)|2∑

h−ıh<|si−sj |<h+ıh

wiwj

. (26)

Weights were computed by constructing Voronoï polygons of the
measurements using an established method for mapping clustered
data (Kovitz and Christakos, 2004). Each polygon corresponds to
the measurement’s area of influence. We chose the square root of
polygon areas as weights {wi} in Eq. (26). Hence in our case weights
characterize the influence length of measurements. An exception
was made for the islands of Sardegna and Sicily. These islands were
excluded from the computation of Voronoï weights because they
had a sizable impact despite being isolated from existing mea-
surements in the data set. Note that the weighted formulation for
variogram calculation reduces the dominant influence of densely
sampled areas, but that at short lags, where no point pairs from
sparsely sampled areas are available, the variogram values will still
be determined by the densely sampled areas only.

Boxplots shown in Fig. 2 demonstrate a clear discrepancy
between countries in background GDR values, which was not sub-
stantially reduced by removal of the natural drifts (compare top
left and top right plots). For example, Austria and Switzerland have
similar soil types and elevational ranges but their mean GDR values
differ by 31 nSv/h, which indicates a clear bias between these two
countries. The boxplot of computed variogram estimation weights
(Fig. 2, bottom) confirms that these national networks have largely
different sampling densities. Austria has the densest network while
Italy has the sparsest.

Random measurement error for GDR monitors is typically in
the vicinity of 5 nSv/h (Bossew et al., 2008). Therefore, we assume
in this example that W is a diagonal matrix �2

MI with �2
M =

25 (nSv/h)2.

5. Results: Harmonized Kriging

We estimated country biases and applied data harmonization
while interpolating GDR for the four countries. Results from har-
monization are referred to as Harmonized Kriging. We compared
Harmonized Kriging with the classical case where constant coun-
try biases are not considered or included in the universal kriging
model. These results are referred to as Classical UK. We used all 471
observations for estimation of the model parameters and simulta-
neous kriging of residuals.

The statistical distribution of the residuals from the linear model
is compared in Fig. 3 to theoretical normal distributions in the form
of quantile–quantile plots. The left panel shows the residuals from
the model without harmonization, whereas the right panel shows
residuals of the model including country bias estimation. Harmo-
nization leads to a more symmetric distribution, although deviation
from normality still occurs at the tails of the distribution.

Final weighted sample variograms of the residuals are shown
for comparison purposes in Fig. 4. On the left is the weighted
variogram without harmonization, and the right depicts the Har-
monized Kriging variogram. The lag size used to calculate the
sample variograms was 5 km. Spherical variograms were fitted to
the sample variograms using a weighted least squares criterion,
with weights proportional to the number of point pairs within
the lag. A decrease in both sill (from 413 to 229 (nSv/h)2) and
range (from 186 to 132 km) was observed when country bias was

Fig. 6. Gamma dose rate (GDR) from EURDEP data (monthly average in December
2006): standard deviation of Classical UK (top) and Harmonized Kriging (bottom) in
nSv/h.

introduced in the model (from left to right). As a result the har-
monization procedure reduced the sill-to-nugget ratio from 4.2 to
1.9.

Table 1 presents comparative results for estimation of the
drift components. Estimates for country biases and soil drift were
constrained to sum to zero so that the intercepts can be easily com-
pared. Only small differences were found between the estimates for
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Fig. 7. Gamma dose rate (GDR) from EURDEP data (monthly average in Decem-
ber 2006): differences between Classical UK and Harmonized Kriging interpolated
values (top) and kriging error standard deviation (bottom) in nSv/h.

soil drifts with Classical UK versus Harmonized Kriging. The ‘detri-
tal formations’ soil type was an exception to this tendency, but
coefficients estimated from very few samples (i.e. clayey materials,
detrital formations, and the other rock category) have large esti-
mation variances. The intercept in the classical model is defined
as the mean of estimated drifts and therefore has zero associated
standard deviation. In general, highly represented country or soil
classes led to smaller standard deviations in the estimates.

Fig. 8. Correlation histogram of country membership against soil type. The total
number of combinations is 40: four countries by 10 soil types.

Maps of kriging predictions and kriging standard deviations are
shown in Figs. 5 and 6, respectively. Comparing prediction maps
and examining the border region between two countries more
closely (e.g., the enlarged region between AT and CZ in Fig. 5), we
see that harmonization led to a more gradual transition. In this
region, elevation drift appears to have had only a minor effect on
the results. The kriging standard deviation maps show the famil-
iar pattern of small values near observation points and in densely
sampled areas (see Fig. 1), whereas larger values are obtained in
regions where the sampling density is low and at the boundaries of
the study area (e.g. the Italian islands).

5.1. Interpretation of the results

In Table 1, relatively small differences are observed between
the estimates for soil drift using the Classical UK and Harmo-
nized Kriging methods, indicating modest interaction between
country membership and soil type. Fig. 8 shows a histogram
of Pearson correlation coefficients for all combinations of the
four country codes and 10 soil types. These correlation coef-
ficients were computed considering each category as a binary
variable, yielding 40 correlations in total. The largest correlation
coefficient (0.41) conveys that most measurements of alluvial
soils are located in Switzerland. Hence the Swiss membership
bias estimate will be modestly correlated with that of alluvial
soils.

In most cases, correlation values between soil types and country
memberships were small which means that estimation of country
bias had little interference with estimation of soil drift coefficients.
Note that in both models (Classical UK and Harmonized Kriging),
the influence rank of different soil types remained unchanged (see
Table 1). For instance, the largest contribution of soil characteris-
tics to radioactivity exposure appears in volcanic regions, while the
smallest contribution corresponds to clayey areas.

When we relied on a model that included soil class and the influ-
ence of elevation, we can clearly see the benefit of Harmonized
Kriging. The detailed map at the Austrian–Czech border (see right
panels in Fig. 5) shows that Harmonized Kriging led to a smoother
transition (bottom map) than Classical UK (top map) between the
two countries. This is as expected because soil properties remain
unchanged and elevation does not change abruptly at the border
(see both soil and elevation maps in Fig. 1).
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Table 2
Comparison of drift and country bias estimates when omitting the elevation drift in the GDR model (Eq. (25)) – n stands for the number of measurements in each class.

With elevation Without elevation n

Estimate Std. dev. Estimate Std. dev.

Austria (AT) −17.5 3.2 −18.1 2.8 329
Switzerland (CH) 8.9 4.1 15.5 3.6 53
Czech Republic (CZ) 7.2 3.9 4.9 3.4 53
Italy (IT) 1.4 3.7 −2.3 3.4 36

Water surface and glacier −2.1 3.9 1.0 3.7 23
Alluvial deposits 2.1 2.6 −0.4 2.4 94
Calcareous rocks −0.6 2.7 0.4 2.6 80
Clayey materials −20.6 8.7 −23.0 8.1 4
Sandy materials −6.4 5.9 −5.2 5.4 11
Loamy materials 4.4 2.5 3.8 2.4 113
Detrital formations 5.7 9.3 0.9 9.1 3
Crystalline rocks 9.3 2.6 13.0 2.5 109
Volcanic rocks 10.6 3.5 10.9 3.4 31
Other rocks −2.3 8.8 −1.4 8.5 3

Intercept 72.0 2.9 110.8 2.6 471

In order to examine the benefits of harmonization more closely,
we mapped the difference in interpolation values between Classi-
cal UK and Harmonized Kriging as well as the difference in their
standard deviations in Fig. 7. When the network is dense as in
Austria, the difference between Classical UK and Harmonized Krig-
ing reflects estimation of the country bias. Conversely, for a country
with a sparse network such as Italy the difference may vary from
positive to negative values. In this case residuals take a prominent
part in the interpolation results, and indeed the variograms of the
residuals differed markedly between Classical UK and Harmonized
Kriging.

Differences in standard deviations (SD) bear a different spatial
structure. SD for Harmonized Kriging was larger in densely mon-
itored zones (Fig. 7, bottom) because the nugget component had a
larger influence in the Harmonized Kriging case (Fig. 4). The largest
decrease in SD was found in areas with a sparse network of mea-
surements (e.g. continental Italy). Here, reductions in SD resulted
from a lower sill in the Harmonized Kriging residual variogram.

5.2. Multicollinearity and interpretation of country biases

If drift components are strongly correlated (nearly collinear in
feature space), estimation of associated regression coefficients are
subject to convergence problems (Myers et al., 2002). Normally,
this has little effect on prediction when all drift components are
included in the predictions. However, in the harmonization proce-
dure biases are removed from the predictions and estimation errors
are no longer compensated by correlated estimation errors of nat-
ural drift coefficients. Hence, multicollinearity may lead to large
prediction errors in a harmonization context.

In the GDR prediction example, small correlation coefficients
between country membership and soil type (see the above section)
led to minor shifts in drift estimates between Classical UK and
Harmonized Kriging. However, the effect of multicollinearity may
be more substantial in other applications. Thus multicollinearity
should be diagnosed and carefully dealt with in harmonization
studies.

Evidently, one of the risks of harmonization is that a natural
drift may be interpreted as a bias, more specifically in the case
where the original UK model is not reliable. Table 2 illustrates
this possibility, which becomes apparent when estimates for soil
drifts are compared in harmonized GDR models (Eq. (25)) with
and without elevation.

When we deliberately simplified the model by excluding the
influence of elevation, the fraction of variability in GDR that should
actually be related to elevation was redistributed to country

bias and soil drift (Table 2). The largest discrepancies between
drift estimates were found for variables that were correlated
with elevation. For instance, in the estimation of country biases,
we can observe the largest difference in Switzerland, a country
with extreme variability in elevation. Smaller discrepancies were
found in estimates for soil drift categories typically located at low
elevations (e.g. clay), whereas higher biases were found for soil
types at high elevations (e.g. crystalline rocks). When elevation
was omitted from the model, the intercept increased by almost
40 nSv/h. This number roughly corresponds to the mean value for
elevation drift in all four countries.

The comparison between the full model and a deliberately sim-
plified or “blinded” model illustrates the importance, particularly
in a harmonization context, of a model that includes all of the
major natural drifts that describe the state variable. A deficient
functional model form can lead to an incorrect harmonization pro-
cedure because bias may be grossly under- or overestimated if
correlated natural drifts are not included in the model.

6. Discussion and conclusion

In this paper we presented a universal kriging approach that is
able to deal with the issue of merging data from different monitor-
ing networks. We propose a model that includes a state equation
describing the linear relationship between the state variable and
its covariates. We include a measurement equation that describes
how measurements depend on the state variable and on mea-
surement errors. In a harmonization context, both systematic and
random errors must be considered and included in a geostatisti-
cal model. Under this model, the systematic errors are estimated
and the state variable is predicted using slight modifications to
the universal kriging algorithm. We applied the methodology in
an example involving gamma dose rate (GDR) measurements from
four European countries to remove bias due to country member-
ship. Results showed that the method worked well and led to more
accurate predictions, with less abrupt changes at country bound-
aries. The harmonization of data in this real case application (i.e.,
using country membership as a bias factor) worked well and has
practical significance for estimation of the physical model as well.
However, the performance of the method is influenced by the level
of multicollinearity between components in the model. An intuitive
approach is to minimize multicollinearity between trend compo-
nents by optimally selecting the spatial samples for estimation of
the model coefficients (Lesch et al., 1995). Essentially this approach
can be viewed as an optimization criterion for universal kriging as
well (Brus and Heuvelink, 2007). Another approach to the multi-
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collinearity problem is to perform a two-staged sampling design
optimization procedure, as suggested for instance by Lophaven
(2004, Appendix E). Lophaven’s two-stage strategy consists of first
selecting the best samples for trend estimation, and then adding
new samples for estimation of the covariance structure.

If sampling design optimization does not substantially decrease
multicollinearity, an alternative approach relies on more local
methods of estimation. Skøien et al. (2009) developed a method
for detecting biases along boundaries between regions or countries.
The method makes use of line kriging, which estimates the aver-
age of the target variable along the country border. Line kriging is
done twice, each time using observations from one country only.
The difference between the two estimates is then used to assess the
systematic difference between the networks. The method focuses
only on differences between regions and can be advantageous
when there is strong multicollinearity between natural and arti-
ficial drifts. It avoids this problem by operating at a local scale,
where natural drifts are sufficiently constant and their influence
can be ignored. The advantage of our method is that it provides a
solution that integrates the estimation of bias factors and natural
drifts in a universal kriging approach.

The harmonization model presented in this work also assumes
that the relationships between covariates and the state variable,
and between bias factors and the state variable, are linear. This
assumption greatly simplifies the statistical analysis, although it
may be too simplistic for some real-world applications. A sim-
ple extension would be to consider appropriate transformations
of covariates and bias factors prior to statistical modelling. A more
elaborate approach would be to apply a generalized linear model
for geostatistical data (Diggle and Ribeiro, 2007), which would also
be able to handle non-normality of residuals.

Two main developments in harmonization methods are envis-
aged. First, because biases between networks are linked to calibra-
tion issues, comparison studies between different device types are
necessary to derive calibration models that include a proportional
effect (Osborne, 1991). The Harmonized Kriging approach can be
modified to handle proportional effects as in Fassò et al. (2007). This
should further generalize the model, making the approach more
complete. The second anticipated development relies on the use
of prior information about the biases. If expert knowledge or more
relevant bias estimates are available, these can be included as priors
in a Bayesian approach (Diggle and Ribeiro, 2007).

Bias correction is increasingly important because globalization
leads to increased integration of various datasets for statistical anal-
ysis. For instance, the establishment of European soil property maps
confronts the same problem (Carré et al., 2008). We believe that
geostatistical bias correction methods can provide the necessary
harmonization procedures, but a number of issues need further
attention before these methods are ready for routine use.
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