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a b s t r a c t

Web-based distributed modelling architectures are gaining increasing recognition as potentially useful
tools to build holistic environmental models, combining individual components in complex workflows.
However, existing web-based modelling frameworks currently offer no support for managing uncer-
tainty. On the other hand, the rich array of modelling frameworks and simulation tools which support
uncertainty propagation in complex and chained models typically lack the benefits of web based solu-
tions such as ready publication, discoverability and easy access. In this article we describe the devel-
opments within the UncertWeb project which are designed to provide uncertainty support in the context
of the proposed ‘Model Web’. We give an overview of uncertainty in modelling, review uncertainty
management in existing modelling frameworks and consider the semantic and interoperability issues
raised by integrated modelling. We describe the scope and architecture required to support uncertainty
management as developed in UncertWeb. This includes tools which support elicitation, aggregation/
disaggregation, visualisation and uncertainty/sensitivity analysis. We conclude by highlighting areas that
require further research and development in UncertWeb, such as model calibration and inference within
complex environmental models.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The “Model Web” presents a vision of a future wheremodels are
exposed as Web Services in a flexible distributed architecture
(Geller and Turner, 2007; Nativi et al., in this special issue). The
principle is that models are exposed on the Web and can be
discovered, combined into complex workflows and executed over
a distributed architecture. Such a system provides tremendous
opportunities to enhance scientific modelling by:

� improving the integration of different models to address
practical questions;

� increasing the reproducibility and transparency of research by
providing clear and repeatable provenance information for
modelling outputs;
ling Science and Technology.
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� allowing more flexible deployment, for example in cloud
architectures;

� facilitating the discovery and reuse of model components and
code.

The Model Web is in all important respects a developing real-
isation of the ‘Web ServiceModeling Framework’ conceptualised by
Fensel and Bussler (2002) and the four key elements they identify as
essential (ontologies, goal repositories, web services descriptions and
mediators)mapveryclosely to the tools described later in this article.

A practical implementation of the Model Web concept requires
interoperability of models and information models in an open
system setting. This raises several important challenges. The first
challenge is semantic; for multi-disciplinary models to successfully
interact in robust systems modelling, there must be unambiguous
definitions of all model inputs and outputs, and the scales onwhich
these are measured, since different science domains may use
different terms for the same phenomenon, or the same terms for
different phenomena. Villa et al. (2009) describe the consequent
need for some form of ‘declarative modelling’, and review recent
responses to this problem in the field of environmental modelling.
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Such vital semantic mapping issues have been addressed in the
context of distributed geospatial modelling by the SWING project2

and its follow-up, ENVISION,3 which is currently developing
semantic annotation, harvesting and ontology management tools
to support the adaptive chaining required by the Model Web
(Janowicz et al., 2010).

In this paper we focus on another issue that faces all modelling
frameworks including the Model Web; that of uncertainty
management in an era of increasing access to both data andmodels.
The data are typically Earth observations taken from both satellite
and in situ systems, while the models range in complexity from
empirical statistical models, through box or lumped conceptual
models to fully distributed spatio-temporal simulators such as
global climate models. Whatever their complexity, these models
have several common features: they all read inputs (for conve-
nience, we consider model parameters here also as model input),
carry out computations or other manipulation on those inputs, and
produce outputs. Model inputs may be observed or measured
values, or they may be outputs from other models. In either case,
model inputs are subject to errors, and these errors will contribute
to the uncertainty of the model output. Quantifying this error or
uncertainty is called error propagation (Heuvelink, 1998), as the
error in model input is propagated into the error in model output.
Additional uncertainty will be contributed by the modelling
process itself, and we refer to this henceforth as model structure
uncertainty (Beck, 2005; Refsgaard et al., 2006a). The components
of uncertainty in model results are more fully addressed in later
sections e at this stage in the discussion, the important issues are
their existence and impact. In the following discussion, we will use
the word ‘sensor’ in a broad sense, to indicate any agent which is
capable of recording an observation of the real world.

Model outputs and observational data are increasingly being
used in policy and decision making, where the use of incomplete
information is a risky undertaking, unless some attempt is made to
account for and quantify the impacts of gaps in knowledge (Evans,
2008). Some of the most pressing issues facing society, such as
climate change (Stainforth et al., 2006) and its economic impacts
(Roughgarden and Schneider,1999), sustainable development (Levy
et al., 2000; De Lara and Marinet, 2009) and future energy supplies
(Jebaraj and Iniyan, 2006) are subject to significant uncertainties
which seriously affect the development of strategy, as well as
causing serious scientific debate as to the value and purpose of
modelling (e.g., Dessai et al., 2009). In general where there is
a decision with a specific cost on taking some remedial action and
a loss associatedwith taking no action (Berger,1985), andwhere the
costs and losses have significant non-linear dependency on model
outcomes, oftenwith critical thresholds, knowing the uncertainty in
the model predictions can change the decision taken.

There is an increasing recognition of the importance of quanti-
fying uncertainty in modelling (e.g., Geza et al., 2009; Allen et al.,
2007; Clancy et al., 2010; Feyen and Caers, 2006; Cheng and
Sandu, 2009). However, the treatment of uncertainty within
modelling frameworks such as the proposed Model Web is not
straightforward: firstly, many frameworks which can currently
handle components published as services do not have strong or
consistent support for propagating or analysing uncertainties, and
secondly, the distributed environment introduces a number of new
challenges. In service, grid- and cloud-computing based modelling
frameworks, model components may be discovered and composed
in flexible and potentially complex workflows. However, if this is
donewithout careful description of uncertainty and attention to the
2 http://138.232.65.156/swing/ last accessed 07/05/2011.
3 http://www.envision-project.eu/ last accessed 07/05/2011.
quality of (intermediate)model outputs, then thefinalmodel output
may be too inaccurate for the intended use; and, more importantly,
the usermay be unaware of this fact. It is therefore essential that the
reliability of intermediate and final results is quantified and
communicated to the end user. Extending theModelWeb to handle
and convey uncertainty information in this way is a great challenge.

Complex environmental and geospatial models have specific
issues when it comes to uncertainty handling. These include:

1. large amounts of observational and other data do not currently
have reliable uncertainty information associated with them;

2. most existing models used across the geosciences and beyond
do not have reliable information about their model uncer-
tainties, or model structure uncertainty, available;

3. many of the phenomena of interest are spatial, temporal or
spatio-temporal in nature, are measured and expressed at
various spatial and temporal scales and often have strong
correlations imposed by the physics and dynamics of the
natural systems, all of which cause difficulties when evaluating
uncertainty;

4. representing spatially and temporally distributed systems
typically requires large numbers of variables, and capturing the
uncertainties and correlations in these variables is computa-
tionally demanding;

5. mostmodels havenon-linear responses to their inputs, and thus
can have complex probability distributions over their outputs,
even for simple parametric input probability distributions;

6. analytic results will be the exception rather than the rule, and
thus Monte Carlo methods, with their associated computa-
tional expense, will be the default uncertainty propagation
mechanism, implying limitation of the proposed solution to
computationally cheap models or situations with large
computational resources.

The above issues are challenging, but must be addressed in
order to make progress and ensure that the Model Web, or indeed
any modelling framework, is of practical use. Additional tools are
needed to support the practical usage of uncertainty management,
for example to address the current lack of uncertainty information,
to reduce the computational demands, to manage the issue of
changes in spatial and temporal scale and to communicate the
uncertain outputs of the modelling workflows.

In this article we describe a coherent framework for extending
the Model Web concept of integrated modelling while also taking
into account uncertainties. The framework described will be real-
ised by the UncertWeb project (http://uncertweb.org).

The paper is organised as follows. Section 2 introduces the
existing approaches to managing uncertainty in modelling, setting
the context for the later work. Section 3 describes the practical
issues that arise in quantifying and analysing the propagation of
uncertainty. Section 4 reviews existing modelling frameworks with
a focus on their ability to support uncertainty management and to
interoperate with the Model Web. The solutions proposed within
the UncertWeb project are described in Section 5, including the key
tools that enable users to exploit the “uncertainty-enabled Model
Web” effectively. The article concludes with a discussion of the
likely impact of the “uncertainty-enabled Model Web” on future
scientific activities and highlights the areas that require further
research.
2. Uncertainty in modelling

“All models arewrong; some are useful.” (Box and Draper,1987).
This statement originally referred to statistical models but is

http://uncertweb.org
http://138.232.65.156/swing/
http://www.envision-project.eu/


Fig. 1. A schematic representation of the relation between people, reality, models and
observations.
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equally true of physical-deterministic models of complex envi-
ronmental systems.

Uncertainty is a challenging notion for scientists who have often
been trained following a mechanistic, deterministic modelling
paradigm. Yet all models are abstractions and simplifications of the
complex reality they aim to represent. In this work we do not
discuss the various types of, and basis for, uncertainty identified in
more philosophical research (e.g., Smets, 1991; Dawid, 2004; Sigel
et al., 2010), but rather focus on an operational/practical approach
to uncertainty. Almost all uncertainty we seek to address within
this work might be characterised as epistemic uncertainty arising
from a lack of knowledge, rather than intrinsic randomness, or lack
of precision in semantics.

2.1. Origins of uncertainty

While several mathematical and computational frameworks
exist for working under uncertainty or incomplete knowledge, we
argue that, practically, a subjective Bayesian approach (Jaynes,
2003) is the most natural choice when working with models,
observations and their relation to reality (see also Dawid (2004) for
an interesting discussion on this issue). Management of uncertainty
is essential when working with models of real systems (Brown,
2010). The main uncertainties arise from uncertainties on model
inputs (which are often either direct observations from sensors or
data derived from observations using other models), and from
model structure uncertainty. Uncertainties on observations or
derived data can be identified with:

� measurement uncertaintye the intrinsic uncertainty in a given
measurement, due to noise in the electronics of the sensor
system (Desenfant and Priel, 2006);

� representativity uncertainty e additional uncertainty arising
from the difference between the spatial and temporal sampling
footprint of the sensor and the defined spatial and temporal
representation of reality (Frehlich, 2011);

� sensor model uncertainty e incomplete knowledge of the
sensor, or of the forward observation model which maps the
measured quantity to the target variable (Agarwal, 1998);

� transmission uncertainty e possible artefacts and processing
errors introduced by the computer systems and electronics
that carry and process the sensor observations (Bullen et al.,
2003).

This list is not exhaustive and rarely are all sources of uncer-
tainty known. A more complete discussion of observational errors
can be found in Hill and Tiedeman (2007; Chapter 3). Often,
information about the uncertainty of an observation can only be
determined a posteriori, using validation campaigns. In such
a setting the overall uncertainty with respect to reality is assessed
using carefully quality controlled ‘reference observations’ which
are often assumed to have negligible error, or using techniques such
as triple collocation (Stoffelen, 1998). Using validation data it is
possible to estimate the overall uncertainty. If some data are
retained for testing only, the uncertainty judgements made on the
observations can also be validated (Gneiting et al., 2007).

Model uncertainty (Allen et al., 2002; Brown and Heuvelink,
2005; Lindenschmidt et al., 2007; Refsgaard et al., 2007; Goldstein
and Rougier, 2009; Park et al., 2010; Smith and Marshall, 2010) is
even more complex and can arise from a range of causes including:

� mechanism/structural uncertainty e it is impossible to include
all mechanisms and physical, chemical, biological or human
processes that act on reality in the model e they must be
simplified and prioritised (Refsgaard et al., 2006a);
� representation uncertainty e for spatial, temporal and spatio-
temporal models it is necessary to map the space, time and
space-time fields of the real system to the model variables,
typically by discretisation or projection onto some basis such as
a grid, set of elements or harmonic expansion. This introduces
uncertainty due to the finite dimensional nature of the discrete
representation (Frehlich, 2011);

� parameter uncertainty e many inputs to a model cannot be
directly observed, and we tend to think about these as being
parameters in the models, whose values are often empirically
determined but essentially unknown (Aster et al., 2005;
Tarantola, 2005; Gallagher and Doherty, 2007);

� numerical uncertainty e non-trivial models will require some
sort of solver, often integrating differential or difference
equations forward in time, and these together with the finite
precision representation on digital computers will introduce
additional uncertainty (Ataie-Ashtiani and Hosseini, 2005;
Clark and Kavetski, 2010).

As with observational uncertainty, this list is not exhaustive, and
is missing a description of the now-notorious ‘unknown unknowns’
(Meyers, 1969; Jaher, 1970; Kerwin, 1993). Such issues are very
challenging to deal with in a quantitative framework, but could be
important in some complex models, such as Earth System Models,
where human activity for example is very challenging to model.
Specification of model structure uncertainty is an open and chal-
lenging research problem, andmany approaches are being pursued,
from the more philosophical reification approach (Goldstein and
Rougier, 2009), through approaches based on statistical modelling
and inference (e.g., Kuczera et al., 2006) to generative approaches
which systematically try to simplify more complex models (Cullen
and Frey, 1999).

As shown in Fig. 1, a unified framework is needed to integrate
observations, models and reality, with the users (people) con-
structing both the simulators for the systems (reality), and the
sensors that observe the system. The users also play a critical role in
the above scheme by selecting and channelling appropriate
observations to simulators. As discussed above, the processes of
modelling and observation are both subject to uncertainties.
Typically the observations will be used in a process of calibration to
improve the simulators, so that those simulators produce a better
fit to the observations of reality. In this process, it is important to
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consider the representativity of those observations, and to use
sensible data splitting techniques for model validation, in order to
identify and avoid over-fitting. However, despite calibration and
careful formulation, all simulators of real environmental systems
retain non-trivial uncertainties, as discussed above. The aims of
modelling can be manifold, from improving understanding of the
system to more practical questions of prediction or forecasting.
When models (or simulators) are used to inform decisions it is
critical that any uncertainties in the model predictions on which
the decisions are based are taken into account, because these
decisions will affect reality and this in turn will affect people.

Probabilistic uncertainty may be measured or estimated and
represented in a number of different ways (O’Hagan, in press),
depending on the nature of the phenomenon and the instrumen-
tation available. UncertWeb attempts to recognise a range of
descriptions of probabilistic uncertainty, and to support their
practical use. Themost complete description of a randomvariable is
the probability density function (e.g., Gelman et al., 2003). In
practice, observed patterns are more commonly fitted to a known
class of probability distribution functions (e.g., Normal, Poisson) or
summarised using statistics (e.g., moments such as mean, variance
and skewness). In other contexts, single or multiple realisations of
the variable may be of most value, or may be all that are available.
This is further discussed in Section 5.1 in the context of the
UncertWeb encoding for uncertainty information, UncertML.

3. Practical uncertainty management in modelling
frameworks

To quantify a model’s output uncertainties one can either
modify the model to allow it to propagate uncertainty itself, or
wrap it in an environment thatmanages uncertainty. Modifying the
model, i.e., the computer code that does the numerical calculations,
requires that the model be made to understand input uncertainty
characterizations, carry out computations taking care of these
uncertainties, add uncertainties due to parameter estimation, and
write output uncertainty characterization in addition to the model
outputs. Although this approach might be computationally the
most efficient, especially when all or part of the uncertainty can be
propagated analytically, it also raises a number of problems: (i) it
requires access to the source code and permission to modify it; (ii)
it requires deep knowledge of the model source code, and testing of
the modifications, (iii) the modified model may no longer be
identified under the same name as the original one.

A more practical approach is to keep themodel as it is, and wrap
it with an application (environment) that takes care of the uncer-
tainty characterizations. The approach used here a simple Monte
Carlo simulation, as follows:

1. an application wrapped around the model reads the uncer-
tainty distribution on an input (and/or model parameter);

2. if this distribution is not characterized as a sample, the appli-
cation draws a sample of size n from this distribution;

3. The application runs the model n times with each of the sample
elements as model input, and collects the n model outputs, or
realisations, that characterize theoutputprobabilitydistribution;

4. The application can then convert the model output sample to
summary statistics such as the mean, variance, or quantiles to
approximate confidence intervals as required for subsequent
processing.

The issue of model error, or structure uncertainty, is less easily
handled with such a wrapper framework, since this really only
allows one to propagate uncertainty on inputs such as model
parameters and initial conditions. In theory it could be possible to
include model structure uncertainty in the wrapper framework as
an additive or multiplicative noise component, which could be
simulated andadded to the realisations generated at step 3. As noted
by a reviewer, the UncertWeb framework, although not specifically
designed with multi-model ensembles in mind, could facilitate the
creation of such ensembles if a range of competing models for
a given systemwere all deployed within the same framework. Such
multi-model ensembles are often used to assess model structural
uncertainty, and this could be an additional benefit of exposing
models on the web in the manner suggested in this paper.

The Model Web blueprint requires that such a wrapper appli-
cation, which we could call an ‘uncertainty-enabler’, needs to be
implemented as an interoperable Web Service using open stan-
dards. The benefits of this are huge: (i) data sources can directly be
retrieved from the data source provider, (ii) data sources, models,
and the model wrapper can all run on different platforms, under
different operating systems, and may partially run on computer
clusters, in the cloud or on mainframes, (iii) Monte Carlo samples
can be run in parallel, if the available computing infrastructure
allows this, and (iv) data or model resources can be exchanged, or
re-implemented on different systems without significant change to
the overall setup.

Setting up such a system as aWeb Service of course requires that
aWebclient is available to run it. This client canbean interactive tool
such as a workflow modeller that allows orchestration and execu-
tion of the workflow and that runs in a Web browser, or it can be
anothermodelwrapper that takes the currentlymodelledworkflow
as a component (i.e, as a “model”) in a larger model composition
exercise, to realise a further step of model chaining and integration.
4. Existing frameworks for model-coupling

The Model Web is just one of a number of model-coupling
approaches of varying maturity. The differences between
a number of these approaches have been summarised in Jagers
(2010), who notes that conflicting priorities (e.g., performance,
ease of use and generality) have, paradoxically, led to a surprisingly
wide variety of alternative solutions to the interoperation chal-
lenge. It is particularly useful to note that when choosing a frame-
work for existing models, there is often a tradeoff in convenience -
for example, the effort required to standardise the interface of
legacy code can be substantial, but the resulting usability of the
model can be greatly increased, since it may then be easily wrapped
and combined with other models.

Elements in the orchestration and composition of environ-
mental models can be broadly classified into:

� standard languages and interfaces;
� workflow and orchestration tools;
� frameworks and framework generators.

The following paragraphs set the scene by describing some
commonly-used examples which illustrate the state of the art. It
will be seen that a number of these do not fit neatly into the three
categories above, and some integrated systems address multiple
purposes. The interaction between coupling approaches is very
important; since the ultimate aim is often to ensure re-use of
models, deciding on an interface or language can be critical for the
model developer. For environmental models, spatial data models in
particular may impose restrictions on the combination of models
and the mapping of outputs to inputs. These ‘interoperability’
characteristics are further investigated in Table 1. We also consider
technologies which handle uncertainty in integrated models. These
include packages for model calibration, parameter estimation and



Table 1
A variety of coupling technologies of varying granularity, with information on the specificity of their spatial data models, and their capacity for interoperating with other
toolkits and technologies.

Approach Language/s and service interfaces Spatial data model Interoperates with.

Kepler Java, PMML, WSDL, BPEL, wrapped C/Fortran None: responsibility for assessing the
appropriateness of inputs
devolves to the model.

R and Matlab, ImageJ, GRASSa

and GDALb for GIS
Taverna Java, WSDL, REST, Beanshell, Rshell, Soaplab R
Trident C#, Java .NET, WSDL, BPEL
Vis Trails Python, WSDL Quantum GIS
SME STELLAc or SMMLd

(translated to Cþþ for execution)
Frames of Points which may also
represent grids or network graphs

Python and CCA (through a Java-based portal)

ESMF Fortran, Cþþ Raster grids CCA
MCT Fortran Raster grids CCA
Delta Shell OpenMI As below e internally, multi-dimensional

results can be stored as NetCDF. Spatial
vector data model is closely based on OGC features.

GDAL, Google Earth (through KML export)

OpenMI C# or Java interfaces, wrapped C/Fortran No explicit description: an input/output
‘Object’ may represent raster or vector data

Fluid Earth (see below) and
Delta Shell (see above)

FRAMES Native C interface with bindings for
Java, .NET, Fortran, VB6 and Python

None: responsibility for assessing the
appropriateness of inputs devolves to the model

PEST (as a tightly-coupled module)

Fluid Earth OpenMI-wrapped models As above OpenMI (as a coupling mechanism)
TIME .NET, wrapped C/Fortran Raster grids, vector data, networks and time series.
Tarsier Cþþ Raster grids, networks, points and time series

a http://grass.osgeo.org/ last accessed 03/10/2011.
b http://www.gdal.org/ last accessed 03/10/2011.
c http://www.iseesystems.com/softwares/Education/StellaSoftware.aspx last accessed 07/05/2011.
d http://www.uvm.edu/wgundiee/AV/Spatial_Modeling_Book/3/smml/ last accessed 07/05/2011.

12 http://www.myexperiment.org/ last accessed 07/05/2011.
13 http://public.deltares.nl/display/DS/Home last accessed 09/05/2011.
14 http://www.epa.gov/athens/research/modeling/3mra.html last accessed 07/05/
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sensitivity/uncertainty analysis, and are listed, with application
examples, in Table 2.

The languages/interfaces category includes BPEL4 (Business
Process Execution Language), a widely-used programming
language focussed on message transmission between systems via
Web Services, mediated using Web Services Description Language
(WSDL) documents. BPEL includes validation and control flow
elements which can be interpreted by a variety of engines to
execute a process flow. Other initiatives such as OpenMI5 concen-
trate less on the framework within which modules are arranged,
and more on standardising the interface which each model pres-
ents to the world, so that the requirements and limitations of each
are clear. Recent adaptations to the OpenMI standard display
particular attention to these common issues of interoperability: for
example, allowing more abstract inputs and outputs, and permit-
ting inputs which have no specific time frame, thus opening up the
tools for use with non-time stepping models. The Common
Component Architecture (CCA)6 is another component standard
which appeals to scientific modellers largely because of its support
for multi-dimensional data arrays and parallelisation. In the data
mining community, the XML-based PMML (Predictive Model
Markup Language) is commonly used to summarise and exchange
complete summaries of models complete with defined inputs and
outputs. CSIRO’s ICMS7 (Interactive Component Modelling system)
is considered under this ‘languages’ heading, since its primary focus
is on allowing the development of executablemodel components in
a system-specific, C-like language called MickL.

Workflow tools such as Taverna,8 Kepler,9 Vis Trails10 and
Trident11 provide user-friendly GUIs within which modular pro-
cessing or data entities can be arranged, inputs mapped to outputs
4 http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf last accessed 07/05/
2011.

5 http://www.openmi.org last accessed 07/05/2011.
6 http://www.cca-forum.org/ last accessed 07/05/2011.
7 http://www.clw.csiro.au/products/icms/ last accessed 09/05/2011.
8 http://www.taverna.org.uk/ last accessed 07/05/2011.
9 https://kepler-project.org/ last accessed 07/05/2011.

10 http://www.vistrails.org last accessed 03/10/2011.
11 http://tridentworkflow.codeplex.com/ last accessed 07/05/2011.
and control/break conditions defined. The resulting workflow
chains can be stored, published,12 shared and exposed as encap-
sulated models, while the component models themselves must
simply expose a WSDL document describing each process, and its
inputs and outputs. Thus these tools can be used as engines for
interacting with BPEL workflows, as well as, for example,
compiled C code or R scripts. Another, more specific, orchestration
tool, the Open Modelling Engine (Rizzoli et al., 1998) can be used
to schedule MickL components like those mentioned in the
paragraph above.

Finally, there are also a host of more or less discipline-specific
frameworks for combining models and controlling their execution,
such as Delta Shell,13 FRAMES14 (Framework for Risk Analysis of
Multi-media Environmental Systems), SME (Spatial Modelling
Environment),15 Tarsier,16 ICMS (the Integrated Component
Modelling System),17 Fluid Earth,18 TIME19 (The Invisible Modelling
Environment),MCT (Model Coupling Toolkit), ESMF20 (Earth System
Modelling Framework), OASIS21 (Ocean Atmosphere Sea Ice Soil),
CESM22 (Community Earth System Model) and O-PALM.23 Many of
these frameworks include standardmodules for applications such as
hydrological or climate modelling. A recent development is the
generic Bespoke Framework Generator24 (Armstrong et al., 2009)
which generates wrappers and control code wrappers for model
sequencesbasedon standardisedmodelmetadatawhich is collected
in XML schemata. The BFG has been used to generate an updated
2011.
15 http://www.uvm.edu/giee/IDEAS/sme/docs/SME_guide.html last accessed 07/
05/2011.
16 http://ecoviz.csumb.edu/wiki/index.php/Tarsier last accessed 07/05/2011.
17 http://www.clw.csiro.au/products/icms/ last accessed 04/10/2011.
18 http://sourceforge.net/projects/fluidearth/ last accessed 03/10/2011.
19 http://www.toolkit.net.au/TIME last accessed 07/05/2011.
20 http://www.earthsystemmodeling.org/ last accessed 07/05/2011.
21 http://www.cerfacs.fr/3-25801-Technical-Reports.php last accessed 07/05/2011.
22 http://www.cesm.ucar.edu/ last accessed 07/05/2011.
23 http://www.cerfacs.fr/globc/PALM_WEB/ last accessed 07/05/2011.
24 http://intranet.cs.man.ac.uk/cnc/projects/bfg.php last accessed 07/05/2011.
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http://www.earthsystemmodeling.org/
http://www.cerfacs.fr/3-25801-Technical-Reports.php
http://www.cesm.ucar.edu/
http://www.cerfacs.fr/globc/PALM_WEB/
http://intranet.cs.man.ac.uk/cnc/projects/bfg.php


Table 2
A selection of existing simulation software packages (or modules within frameworks) which may be used to uncertainty-enable existing models.

Name Reference(s) or web sites Comments Examples of use

PEST (Parameter
EStimation Toolkit)

Doherty (2004) Powerful calibration, regularization and optimization
toolkit. Implements a variety of parameter estimation
methods, and null-space Monte Carlo approaches
for linear and non-linear analysis of uncertainty,
parameter identifiability and error variance.

a Castleton and Meyer (2009); integration
of PEST into FRAMES.
Dausman et al. (2010); testing of alternative
hypotheses for the wastewater plume
movement, by highly-parallellised
calibration of candidate models and
generation of a subset of ‘superparameters’.
a Doherty and Hunt (2009); describe
statistics (calculated using PEST) to
summarise the extent to which each
parameter of a model can be identified,
and the extent to which the calibration
process can improve on the estimate
based on prior expert knowledge.

UCODE Poeter et al. (2005) Non-linear parameter estimation code e like
OSTRICH and PEST, generates confidence intervals
and other statistics through model inversion,

a Kelson et al. (2002); application to a
mine hydrological context, resulting in a
highly simplified model with equivalent
predictive power.
a Foglia et al. (2009); refinement of
parameters from catchment-scale estimates
for calibration of distributed
hydrological models.

OSTRICH http://www.civil.uwaterloo.ca/
lsmatott/Ostrich/OstrichMain.html

A versatile tool incorporating a diverse set of
algorithms for calibration, optimization and
computation of statistics such as parameter
correlation/sensitivity, and observation influence.

a Rabideau et al. (2005); calibration of
multiple AEM groundwater flow models,
with particular attention to effects of
model precision and observation location.
Matott and Rabideau (2008); describe a
method (in OSTRICH 1.8) for simultaneous
calibration of equally plausible models
by adaptive weighting and mapping of
parameters between reference and
surrogate models.

UNCSAM Janssen et al. (1994) Can do model emulation; does not cope with
spatially and/or temporally correlated variables

a Bärlund and Tattari (2001); application
to the ICECREAM model of field
phosphorus loss.

SME (Spatial Modelling
Environment)

http://www.uvm.edu/giee/
IDEAS/sme/docs/SME_guide.html

Voinov et al. (1999); ecological-economic
spatial process modelling.
Villa and Costanza (2000); spatial
agent-based modeling (enabled by linking
SME with the SWARM agent-based
modeling toolkitb)
Deal and Schunk (2004); scenario
modelling of urban sprawl and its effects;
particular attention to the importance
of model validation.

GENIE-1 Holden et al. (2010) Emulation based on ensemble modelling. a Holden et al. (2010); climate prediction
FRAMES Sensitivity/

Uncertainty module
http://mepas.pnl.gov/
framesv1/sum3ug.stm

Monte Carlo analysis and Latin hypercube sampling.
User supplies parametric distributions for input
uncertainty (currently uniform, log-uniform,
Normal, or log-Normal)

Babendreier and Castleton (2002);
parallelised use in the 3MRA pollutant
fate model
a Castleton et al. (2006); linked FRAMES
with R to calculate & visualize impacts of
input uncertainty

TIME User supplies parametric distributions as above.
Some visualization of uncertainty
(e.g., confidence limits on outputs).

Rahman et al. (2005); incorporation of a
Stochastic Climate Library (SCL) into TIME

SoftIAM http://www.tyndall.ac.uk/sites/
default/files/tr51.pdf

Allows Latin hypercube sampling from Normal,
log-Normal, uniform, triangular Beta or Davies*
distributions (*specifically for risk assessment)

a Warren et al. (2008); SoftIAM used as
an interface to BFG for climate modelling

WADES http://www.ceh.ac.uk/
sci_programmes/Water/
Wades_Project/index.html

Work in progress - aims to assess the relative costs
and benefits of OpenMI wrappers for
integrated modelling.

UNCSIM Reichert, 2006 Systems analysis toolbox used to link simulators
though text input/output files. Supports maximum
likelihood parameter estimation & sampling from a
variety of multivariate distributions.

Arnold et al. (1998); Soil and Water
AssessmentTool (SWAT), watershed-scale
hydrological/water quality simulation;
Hutson and Wagenet (1991); simulation
of nitrogen dynamics in soil.

DUE (Data Uncertainty
Engine)

Brown and Heuvelink, 2007 Quantification of positional and attribute uncertainty
in environmental data by probability distributions
that take spatial and temporal correlations into account.
Can also sample from these distributions for Monte
Carlo uncertainty propagation analyses

Refsgaard et al. (2006b); hydrologic river
basin modelling, handling changes of scale
de Bruin et al. (2008); positional uncertainty
in agricultural field boundaries for use in
precision farming

Crystal Ball Oracle (2011) Spreadsheet based a Dubus et al. (2002); pesticide models
@RISK Palisade (2011) a Dubus et al. (2002); pesticide models

a Rank input parameter contribution to overall uncertainty.
b http://www.swarm.org last accessed 03/10/2011.
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versionof theGENIE25 framework for Earth SystemModelling, and is
being used for the UKMet Office’s FLUME26 (Flexible UnifiedModel
Environment).

4.1. Interoperability in modelling frameworks

Interoperability between the approaches described above is
variable, and some aspects (often strongly influenced by the
discipline fromwhich each approach arose) are summarised briefly
in Table 1. We give particular attention to the spatial data models
employed by each approach, since these are of particular impor-
tance for many environmental models and datasets. To quote
Matott et al. (2009) ‘. the irony in design of both model evaluation
tools and integrated modeling systems is that everyone wants to
define the ‘standard’ and be the integrative framework’. However,
there have been considerable moves within the modelling
community towards interoperability and agreement on common
interfaces at least, and Table 1 illustrates how this has expanded the
usability of coupling technologies.

In terms of model code, almost all frameworks described here
support the use of compiled C, but other languages such as Java and
Fortran are less universally supported and often must be wrapped
before use. Jagers (2010) presents an extremely useful summary of
the capabilities of some of these technologies, particularly with
regard to their ‘code invasiveness’ (i.e., the requirements that each
imposes for rewriting legacy code) and their capacity to support
high-performance computing. Rahman et al. (2005) describe
a typical choice between rewriting and wrapping, where the
decision can depend largely on the complexity and current
performance of algorithm code. In their example, some elements of
the model were rewritten in C#, while others were simply
recompiled and wrapped as Windows DLLs. The generation of
interoperable, standardised wrappers is a huge design issue for the
ModelWeb, where the interfaces to models must be Web Service
interfaces.

The welcome move towards standardised model interfaces
again raises a paradox: the more widely applicable the interfaces
become, allowing new models to easily plug into frameworks, the
more abstract the descriptions of model inputs and outputs
become, and the more the semantics specific to the discipline from
which the model originates are hidden from the outside world.
Thus a model with an OpenMI-conformant interface may accept an
‘object’ which might be a multi-dimensional raster grid, a set of
point observations or a time series. The nature and appropriateness
of the object might be determined only when the data is parsed, so
that the responsibility for finding and linking suitable inputs and
outputs falls on the user.

If information on the nature of model inputs is also published as
standardisedmetadata or as an optional part of themodel interface,
the task of orchestration is far easier, and may even be automated.
This is where the issue of ontology and semantics becomes
important to supplement the abstraction enforced by technical
interoperability, and to help in achieving context independence
without losing access to vital domain knowledge. Rahman et al.
(2004) note the importance of metadata which describes the
‘properties and capabilities of .[executable]. components’, and
specifically chose .NET introspection as the mechanism by which
the TIME framework would derive this information at runtime e

a successful approach which has supported the development of
a number of hydrological decision support systems (e.g., Argent
et al., 2009), but one which places a language restriction on the
25 http://www.genie.ac.uk/index.htm last accessed 07/05/2011.
26 http://www.quest-esm.ac.uk/ last accessed 07/05/2011.
developer. The ICMS, by contrast, derives this metadata at the point
of model compilation, and stores it in a system-specific form. The
XML metadata supplied to the BFG are used in a similar way, and
are currently generated by hand, though a GUI to helpwith this task
is planned. In all of these approaches, of course, reflection by the
user as to the nature of their model and its requirements is
necessary and indeed important; it is simply required at a different
stage of the process and the information is encoded in a different
way. The FRAMES environment tackles the semantic challenge by
imposing a ‘design by contract’ approach where users subscribe to
(or create) a domain ontology containing definitions of what
models may produce or consume. Models conformant to the
supplied dictionary may then be linked through a ‘contract’. A
proposal to standardise uncertainty information via similar
dictionaries is described in Section 5.1.

Of particular interest in the Model Web context are the growing
efforts to adapt the above model-coupling tools to comply with or
use the OGC Web Processing Service (WPS) standard (e.g., Guru
et al., 2009; Jones et al., 2010; Pratt et al., 2010), which raise
many pertinent questions about the abstract nature of OGC service
specifications. Essentially, the flexibility of a WPS in accepting or
producing any data, in more or less any format, can be problematic
when a user who is querying the capabilities and interrogating the
processes of that WPS lacks the semantic tools to understand the
nature of the inputs and outputs. In these instances, profiling or
restriction of the WPS so that it more clearly describes its limita-
tions is extremely helpful in identifying whether that WPS really is
a valid candidate for chaining with another. This restriction is most
usually applied through reference to XML application schemata,
and is fully anticipated in theWPS specification, which states “WPS
can be thought of as an abstract model of a Web Service, for which
profiles need to be developed to support use, and standardized to
support interoperability”. While this requirement is logical, it
weakens the case for OGC services as ‘interoperable’ by imposing
a requirement on users to develop specific clients to consume or
chain these profiled WPS. If a model is to be usable within the
Model Web, its interface must either conform to an agreed profile,
or must be discovered and consumed by a higher-level ‘broker’
which has the capacity to translate the published model metadata
into a usable format. A proposed solution (the CaaS) is described in
Section 5.2.

Naturally, there is some metadata about models which can
never be used in a fully automatic way. For example, information on
the lineage and previous uses of themodel, or on the circumstances
and contexts towhich it is best suited, may in the future be encoded
in some sort of trust metric, but currently rely on a textual
description and the judgement of the user. However, much of the
necessary information on what a model will accept (even complex
details such as required data granularity and valid geographical
range) can be published using schemata and dictionaries, providing
that these are widely accepted and available.

4.2. Exchanging uncertainty information between models

Interface abstraction and the profiling challenge are especially
relevant when a model workflow is used to handle and propagate
uncertainty. As described in Section 2, there are diverse sources of
uncertainty which, even within a probabilistic framework, can be
measured and recorded using different numerical summaries and
metrics. When working in a multi-disciplinary context, the ‘tradi-
tional’ representations of uncertainty may also vary: for example,
the Root-Mean-Squared Error values commonly attached to digital
elevation models involve an implicit assumption that the error in
elevation is symmetric (typically Normal) and identically distrib-
uted in space, while 95% confidence limits given by a sensor

http://www.genie.ac.uk/index.htm
http://www.quest-esm.ac.uk/


27 http://www.pesthomepage.org/home.php last accessed 03/10/2011.
28 http://www.intamap.org/ last accessed 07/05/2011.
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manufacturer for a measuring instrument may give no indication of
how the expected error is distributed within that range, or whether
it is biased or bounded. Some statistical summaries can be easily
combined e for example, different probability density functions
may be combined hierarchically in models to generate conditional
probability density functions, and this approach underpins
Bayesian analysis. Often, however, one representation of uncer-
tainty (e.g., a sample) will require explicit transformation in order
to be combined with another (e.g., a parameterised probability
distribution) in direct computation.

A simple example of such a need for transformation in the
Model Web would be as follows: A climate change scenario model
is used to generate predictions of temperature for pixels in
a geographical area. Each pixel is assigned an expected temperature
with a statistical range in the form of a parameterised probability
distribution function e this is assumed to be Normal, and so the
outputs of the climate model take the form of a mean and variance
for each pixel. These two output maps are to be fed to a second
model, along with other maps to run 1000 agent-based simulations
of animal dispersal. However, the second model requires a static
temperature map as the base for each run, so a plausible realisation
of temperature, with realistic spatial autocorrelation, must be
generated from the statistical summary values, through some
intermediate transformation service. Some of the aspects of the
first model’s outputs are implicitly described within the data (for
example, geographical range, projection and resolution are easily
extracted from a GML document or netCDF file). If the second
model clearly advertises geographical/resolution requirements,
this allows a user to assess or even automatically identify the need
for resampling, aggregation or reprojection. Other attributes of the
outputs, (such as lineage information on the climate model or the
nature of the estimated uncertainty), require similar standard
encodings. In particular, it must be clear that the type of uncertainty
produced by the first model (a probability distribution function) is
not the same as that required by the second model (a set of single-
valued realisations for each pixel).

It can be seen from the above example that the requirement for
models to fully describe themselves is of even more importance
when it comes to handling uncertainty and propagating it through
a workflow. While many models do not inherently handle uncer-
tainty information on inputs, they can still be ‘uncertainty-enabled’
within a framework by repeated calls which effectively allow
a Monte Carlo simulation or stochastic sensitivity analysis as
described in Section 3.

4.3. ‘Uncertainty-enabled’ models e current examples

Many simulation software packages exist which may be used to
‘uncertainty-enable’ existing models. Matott et al. (2009) present
a very useful review of 65 different tools for simulation, calibration,
optimisation and model evaluation, and a number of the most
widely used or pertinent, with example applications, are listed in
Table 2. A further list of freely available software tools for the
development of uncertainty management applications is given in
Table 3. The most successful and widely-used ‘uncertainty-
enablers’ are model-independent, and sometime platform-
independent; this flexibility is generally achieved by a reliance on
ASCII-formatted inputs to and outputs from the wrapped models.
This tradeoff between flexibility and restriction is an equally
important theme for the Model Web, as discussed in section 4.1.
The process of ‘uncertainty-enabling’ can demand significant effort
on the part of the user (for example, through the generation of
template and instruction files to link and feed models, or through
the conversion of binary model outputs to ASCII formats) but in
other cases, simulation tools are made easily accessible as modules
within existing frameworks. If consideration of uncertainty and
validation of linked models is to become routine, especially among
non-expert users, this access to powerful simulation tools which
can wrap and ‘uncertainty-enable’ models must be strengthened
and improved. Recent moves in this direction include the integra-
tion of the PEST parameter estimation toolkit27 into FRAMES
(Castleton and Meyer, 2009). This is an important issue for the
Model Web, and a clear opportunity to build on the interest and
experience within the wider community of integrated modellers.
Visualisation of the spatio-temporal uncertainty of outputs (more
fully discussed in Section 5.3.4) is available to varying extents in
these solutions, and is also extremely important in the presentation
and use of propagated uncertainties.

In many of the above examples, models designed to accept
single input values at each observation point are wrapped and run
multiple times with stochastically-generated input values derived
from the uncertainty specification on these inputs. In other words,
though multiple outputs from these models may be summarised to
produce uncertainty information such as probability distributions,
they do not explicitly accept such uncertainty information on the
inputs. Other models, in contrast, may accept statistical summaries
such as standard deviations, ranges or quantiles and use this
uncertainty information internally in their calculations. In other
words, provided that they can understand the form in which the
input uncertainty is encoded, these models are already ‘uncer-
tainty-enabled’. One such example is the INTAMAP interpolation
Web Service,28 which can consume point observations whose
uncertainty is represented as parameter values for well-known
distributions, and produce interpolated maps of mean and vari-
ance using an algorithm most suited to the nature of the input
uncertainty (Pebesma et al., 2011). In an alternative approach
which combines numerical and semantic elements of uncertainty,
the ‘EcoPath’ model commonly used in fishery management plan-
ning (Pauly et al., 2000) elicits estimates of input uncertainty from
users through the assignment of ‘pedigrees’, recording the lineage
of the data (a guess, a global estimate, a measurement) as well as
allowing the user to select confidence intervals. The two elements
of the uncertainty are combined to perform potentially complex
analyses, for example using the Bayesian ‘Ecoranger’ module.

Many of the existing frameworks and model implementations
tend to address very specific application domains and focus largely
on model calibration and parameter estimation; this makes them
highly valuable for handling specialised and complex data and
algorithms within a research field, but can raise challenges for
multi-disciplinary model chaining. A number of the existing
approaches support uncertainty propagation through Monte Carlo
methods, which have proven value for sensitivity and uncertainty
analysis. In the following section we develop a generic framework
for managing uncertainty in the Model Web context, informed by
the lessons learnt in previous work.

5. A proposal for an uncertainty-enabled Model Web

The challenges raised by the transition from isolated data sets
and models deployed on individual computers, to Web-deployed
data sets and models with well defined and widely understood
interfaces and informationmodels cut across awide range of issues.
The management of uncertainty in the Model Web is one of these
challenges.

Within the UncertWeb project a range of tools are being
developed to support the assessment of uncertainty using expert

http://www.pesthomepage.org/home.php
http://www.intamap.org/


Table 3
Programming tools for development of uncertainty software.

Tool Reference/website Comments Examples of use/case studies

R http://www.r-project.org/ Open source application with a wide selection of
statistical/modelling libraries including some
spatio-temporal functions.

Langford et al. (2009); assessment of susceptibilities of conservation
planning algorithms to input uncertainty. Output uncertainties
visualised using R plotting functions, as statistical summary plots.
Sensitivity’ (G. Pujol e http://cran.r-project.org/web/packages/
sensitivity/). A freely-available R package containing a collection of
functions for factor screening and global sensitivity analysis of model
output.

python http://www.python.org/ Another library-based language with many
mathematical and spatial modules.

ModelBuilder (F. Coelho e http://model-builder.sourceforge.net/) e
graphical tool for simulating models based on ordinary
differential equations

SimLab http://simlab.jrc.ec.europa.eu/
docs/html/main.html

Development framework specifically for
sensitivity/uncertainty analysis e
supports global methods only

Le Maire et al. (2011); One of many studies which employ
methods implemented in SimLab (in this case, the FAST technique)
for Monte Carlo estimation of uncertainties and parameter effects.

DAKOTA http://dakota.sandia.gov/
index.html

Toolkit which implements numerous
algorithms for optimisation, experimental
design and uncertainty quantification.

Eldred et al. (2011); describes methods (incorporated in DAKOTA)
for separating and nesting sampling based on epistemic and aleatory
uncertainties, combining local and global gradient-based
optimisations.

JUPITER API http://water.usgs.gov/
software/JupiterApi/

Platform for developing model analysis
applications (e.g., UCODE, MMA) with
many built-in algorithms.

Banta et al. (2008) Description of how the API can be used as a
platform for fast testing and prototyping, particularly where
weighting of prior information and specification of correlated errors
are required.
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elicitation (Section 5.3.1), the aggregation and disaggregation of
spatial and temporal fields (Section 5.3.2), efficient uncertainty
and sensitivity analysis methods (Section 5.3.3) and the visual-
isation of uncertain variables (Section 5.3.4). These tools are key
drivers in promoting uncertainty management in the Model Web,
and they all use the UncertML standard described below for their
communication.

5.1. Representing uncertainty interoperably: UncertML

UncertWeb adopts a probabilistic approach to representing
uncertainty. As a conceptual information model for representing
probabilistic uncertainty, the UncertML29 language was devised
within the INTAMAP project (Pebesma et al., 2011) to describe
random quantities. Version 1.0 of UncertML was a weak- typed
design (Williams et al., 2009), with strong dependencies on
Geography Markup Language (GML) and extensive use of the
Sensor Web Enablement (SWE) standards (OGC 08-094r1, 2004).
UncertML 2.0, released in February 2011 and developed within the
UncertWeb project, is a simpler hard-typed design. This reduces
flexibility but allows more complete interoperability, since soft-
ware providers can actually claim their software supports
UncertML 2.0. Hard-typing also permits the implementation of an
Application Programming Interface (API) that supports encoding
and decoding of XML and JSON documents.

The conceptual model for UncertML 2.0 is very simple. A basic
abstract uncertainty type is specialised to create Distributions
(probability distribution functions, including mixture models for
multi-modal distributions), Statistics (summary statistics, such as
moments), and Samples (realisations of random variables). These
types correspond to those described in Section 2.2, and allow
UncertML 2.0 to represent uncertainty very flexibly.Where possible
the more complete description of a probability distribution is
preferred. UncertML consists of a dictionary to precisely define the
semantics of the uncertainty elements, and can encode both
univariate and multivariate random quantities.

Since the inputs and outputs of complex environmental models
are usually spatio-temporal, a standard way to integrate UncertML
with spatio-temporal data is required. UncertML separates concerns
29 http://www.uncertml.org/ last accessed 07/05/2011.
by focussing purely on uncertainty, and is designed to be used with
other standards such as Observations and Measurements (O&M e

a common XML encoding for exchanging observations in the Web)
(Cox, 2007), which can be used to define the variables being
considered, the sampling or model output locations etc. The
UncertWebO&M (O&M-U) profile restricts the O&M specification to
permit only certain geometries and time units. This tight profiling
solves many of the abstraction problems described in Section 4.1.
Uncertainty can be added to an O&M document in two ways: (1)
uncertainty can be added as additional quality information to the
result, or (2) the result itself can be encoded as an uncertain value. In
both cases, UncertML is used tomodel and encode the uncertainties.

While O&M is well-suited to observations with spatial vector
geometries, grid-based observations are better encoded using the
Network Common Data Format (NetCDF), an established format for
exchanging multi-dimensional gridded environmental data. Thus
an uncertainty-enabled NetCDF profile (NetCDF-U) has also been
developed within UncertWeb. As a first step, the UncertML dictio-
nary is used to define the variables that contain the uncertainty
values. In the longer term, basic data types for uncertainty will be
defined in the common data model on which NetCDF is based.

UncertML plays a central role in uncertainty-enabling theModel
Web. It is the primary mechanism for communicating uncertainty
between Web Services (which, in the Model Web context, act as
model interfaces). Existing standards for communicating within
Web-based systems, (for example the Open Geospatial Consortium
series of standards) already have some support for uncertainty in
the ISO19139 compliant data quality measures (ISO19139, 2007).
However, most of the measures that are defined for such quality
indicators (ISO19138, 2006; ISO19157, 2011) are not very generic
and relevant only to very specialised domains; for example, there is
no method for representing a probability distribution. Another
issue with existing encodings is that most models follow the
“result” and associated “result quality” pattern. For models with
model structure uncertainty there is no notion of a unique result;
rather the result itself is uncertain. Thus it would not be very
natural to always encode uncertainty in the result quality, because
this begs the question of what to put in the result? One option
might be the mean, or expected value, but in some situations, (for
examplewhere themodel predicts the outputs to be in two ormore
plausible states) the mean can be a very misleading, and indeed,
improbable result.

http://www.r-project.org/
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UncertML addresses the deficiencies in data quality standards
by providing a standardized way to encode quantified uncertainty
such as probability distributions. Using the O&M-U profile, model
results with spatial vector geometries can now be provided enco-
ded as uncertainties (rather than as values with associated uncer-
tainty) or with additional metadata about the model result.
Similarly, the NetCDF-U profile allows for providing uncertain
gridded model results in a standardized and meaningful way.

5.2. The UncertWeb architecture

The UncertWeb framework aims to support uncertainty in the
discovery, access and chaining of data sets and models, while
keeping in line with the Model Web principles. The design of the
UncertWeb framework architecture is based on the following
principles:

i) Re-use of existing tools: Several initiatives and projects at
national, regional, European and global level already provide
resources and tools that could be useful for the development
of an UncertWeb framework. The adoption of a Service-
Oriented-Architecture (SOA) style (Erl, 2005) allows us to
integrate such heterogeneous components.

ii) Extension of the Service-Oriented-Architecture (SOA): During
the last decade, the SOA style, successfully adopted in
different contexts such as e-Business and e-Government
(IDABC, 2004), has also been adopted in the development of
Web-based geospatial resource sharing systems (OGC, 2002).
However, in the development of the global System-of-
Systems (SoS), SOA has limitations due to the growing
complexity of the overall system. Solutions based on the
introduction of specific components (brokers) which act as
mediators will help to lower the entry barrier for users (Nativi
and Bigagli, 2009);

iii) Multiple solutions for uncertainty representation: From
a conceptual perspective all data should be treated as
uncertain. However, it must be acknowledged that almost all
existing data resources are not treated in this way. Most data
sets come simply as a series of values, often without any
uncertainty information. Therefore the UncertWeb system
architecture needs to accommodate both kinds of represen-
tation: a) data sets with uncertain values (e.g., expressed as
a probability distribution); b) data sets with certain values
and associated uncertainty information (e.g., expressed as
accuracy metadata).
Fig. 2. Dependency view of the main Un
Fig. 2 depicts the UncertWeb architecture in terms of high-level
entities, which can be categorised as four high-level packages, and
a broker component; package dependency is reported through
directed arrows. Packages are as follows:

� A GUI package that includes all the components handling user
interaction.

� An Uncertainty Tools package that includes all the components
and applications for uncertainty management, such as elicita-
tion and visualization.

� An Available Services package that collects all the services
exposed in the UncertWeb system. It includes the typical
geospatial functionalities:
B Data View: for presentation and portrayal of data sets;
B Data Access: for accessing data sets for further evaluation

and use;
B Data Catalog: to register and find data sets based on their

metadata;
B Data Publishing: to provide a persistence layer for data sets

and results.
BData Transformation: to process and manipulate data sets.
For the UncertWeb purposes, general data transformations
are further classified as:

- Data Processing: information extraction and processing, by data
set aggregation, operation of models on inputs, etc.

- Data Conversion: transformationwithout information extraction,
for example change of format or change of coordinate reference
system.

- Uncertainty Transformation: transforming the representation of
data set uncertainty.

� A Data Types package that includes all the specification and
tools for managing uncertainty-enabled data types. These
include profiles such as the O&M profile described in Section
5.1.

� A Composition-as-a-Service (CaaS) component which is
controlled through the GUI and gives access to all the available
services, adopting an extended-SOA approach (broker-based
mediation).

Fig. 2 shows that the Available Services act upon data sets
expressed according to the available Data Types. The components in
the GUI package may also access the Uncertainty Tools. On the other
hand the GUI needs to access the services in the Available Services
package. Due to the heterogeneity of the services in terms of
certWeb architectural components.



30 http://elicitator.uncertweb.org/ last accessed 8/5/11.
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interfaces, metadata and data models, a direct link would impose
a great complexity on the GUI components, limiting their usability
and consequently the scalability of the overall system. Therefore
according to the extended SOA approach, a specific service broker
component called the CaaS (Composition-as-a-Service) component
is introduced to mediate the interactions between the user and the
services. The two main tasks of the CaaS are service composition
and the publication of workflows as services.

This high-level view helps to highlight some important points:

� UncertWeb provides different resources: Tools (e.g., the
Uncertainty Tools), Services (i.e., the Available Services) and Data
(i.e., the Data Types).

� The CaaS plays a central role, being the component that
harmonizes the access to the Available Services (and indirectly
to the Data Types).

The architecture is being further developed and will be more
completely described in future publications.

5.3. UncertWeb tools

The UncertWeb framework can only work if the tools needed to
analyse how uncertainty propagates through model workflows and
to communicate and visualise the resulting uncertainties have been
implemented properly. Since UncertWeb currently uses a Monte
Carlo simulation approach for uncertainty propagation, all that is
required for the actual uncertainty propagation analysis is
a computational loop around the models as described in Section 3.
The tools described here will support the Model Web’s capabilities
in the quantification of uncertainties in inputs and models within
service chains, the spatio-temporal aggregation and disaggregation
of uncertain variables, the analysis of uncertainty and stochastic
sensitivity, and the communication of output uncertainty to end
users and decision makers. These tools will prove to be critical in
achieving impact across the environmental and, more broadly, the
applied science user communities, providing a suite of services and
applications to make the uncertainty-enabled Model Web easy to
use.

5.3.1. Expert elicitation
Keeping track of uncertainties in service chains implies that the

uncertainties about the input data submitted to the chain and the
uncertainties associated with the models used in the chain are
known. In many cases these uncertainties can be derived - for
example, from the precision of measurement devices, goodness-of-
fit of regression equations or from statistical sampling error e but
sometimes the uncertainty must be derived from expert judge-
ment. Expert elicitation is a systematic process of formalising and
quantifying expert judgements about uncertain quantities, typi-
cally in probabilistic terms.

Since the first development of structured expert-opinion elici-
tation by the RAND Corporation in the 1940s (Cooke, 1991), formal
expert elicitation has gradually become a mature research field.
Recently, expert elicitation has attracted more attention from
statisticians and experts in uncertainty analysis (O’Hagan, 1998;
Cooke and Goossens, 2000; Meyer and Booker, 2001; O’Hagan
et al., 2006). Uncertainty about quantities elicited from experts is
encoded in the form of a probability distribution function. The two
statistical frameworks commonly used for this purpose are para-
metric fitting and nonparametric fitting. The former fits expert
judgments to standard parametric families of distributions and is
the method used in UncertWeb. In this approach, quantiles of the
distribution such as the median and first and third quartiles are
elicited from the expert using a formal procedure, after which the
most appropriate shape of the probability distribution is selected
automatically and the associated parameters are estimated.

When multiple experts are involved in the elicitation process,
a combination of expert judgements is needed to utilize knowledge
from all experts. Interaction among experts is not needed when
using mathematical aggregation (O’Hagan et al., 2006). In contrast,
behavioural aggregation requires some degree of interaction
amongst experts. UncertWeb approaches experts through theWeb,
which complicates interaction between experts. Hence, a mathe-
matical aggregation of the experts’ opinions is used.

The implementation of expert elicitation in UncertWeb is
provided by the Elicitator.30 It largely builds on the existing
SHELF methodology developed by Oakley and O’Hagan (2010).
One major extension is that the entire process is Web-based. It
involves a problem owner who defines their problem, provides
background information and selects experts. Fig. 3 shows an
example of the initial Webpage viewed by the problem owner.
Once experts are selected, they are notified and can perform the
elicitation independently behind their own computer, at any
suitable time and at their own pace. Fig. 4 shows a typical Web-
based form that the expert would need to fill in. Results are
communicated to the expert and provisions for reconsidering
and changing earlier judgements are provided. Once all experts
have submitted their opinion these are aggregated by the tool
and the resulting probability distribution is stored in UncertML
(Fig. 5). All stages of the problem are recorded, so that the lineage
of the elicitation is fully accessible to the problem owner, and
could potentially also be inserted in a published workflow to
support reproducible science.

The Elicitator facilitates the elicitation of both numerically
continuous and categorical variables. In addition, it also supports
the elicitation of spatially distributed continuous variables, by
providing a tool to estimate the semivariogram.

5.3.2. Spatio-temporal aggregation and disaggregation
Aggregation and disaggregation are common operations or

computational components inside environmental models. For
instance, hydrological models may aggregate rain when they
compute river discharge from spatio-temporally distributed rainfall
values. Alternatively, they may predict spatially distributed soil
moisturecontent fromcatchmentaverage (aggregated)precipitation.
Outside the modelling context, aggregation and disaggregation is
requiredwhenthe spatial, temporalor spatio-temporal resolution (or
support) of the model input or output does not match the resolution
required at the next stage of processing. This sort of functionality is
typically found inmodel couplers, suchas theOASIS3coupler (Valcke,
2006) but the uncertainty introduced by the aggregation/disaggre-
gation process is not estimated by these couplers.

A very common case is that of time series data. When rainfall
data are available on a daily basis, but a model requires data on
a monthly basis, the time series can be temporally aggregated. By
spatio-temporal aggregation we mean the computation of a single
value from a set of (spatially or temporally or spatio-temporally)
contiguous values, for one or more of these sets. The aggregation
involves the application of an aggregation function, such as the
mean, median, maximum, 95-percentile, or variance. Spatio-
temporal disaggregation is the reverse process: from one or more
aggregated values, one or more sets of values for smaller spatial,
temporal or spatio-temporal units are generated. Other words used
for these processes are upscaling (aggregation) or downscaling
(disaggregation). Typically, aggregation is a relatively simple
activity when a simple function can be applied such as taking the

http://elicitator.uncertweb.org/


Fig. 3. A screen capture of the elicitator showing the creation of an elicitation problem.
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average value over a number of grid cells and will reduce uncer-
tainty. More complex forms can involve techniques such as block
kriging. Disaggregation typically involves more modelling, and
requires ancillary information about the phenomenon that is not
available from the aggregated data alone (Bierkens et al., 2000) and
will increase the uncertainty in the smaller scales.

Because spatio-temporal aggregation and disaggregation are
commonly-required activities when model chains are formed, the
UncertWeb tools will include a generic Web Service for spatial,
temporal or spatio-temporal aggregation. It will only work with
Monte Carlo samples, and for each sample element will aggregate
the values to a new spatio-temporal resolution (Heuvelink and
Pebesma, 1999). Disaggregation will be implemented prototypi-
cally, for a very limited set of cases, using the area-to-point kriging
technique.

5.3.3. Uncertainty and sensitivity analysis
Whenmodels are exposed on theWeb in a discoverablemanner,

users will not necessarily be familiar with the detail of the models,
and their response to inputs. The problem becomes even worse
when models are composed in workflows, where they might have
rather unexpected behaviour, due to the interactions of the
different components in the workflow, that needs to be charac-
terised and understood by the users. One way to address this is by



Fig. 4. A screen capture of the elicitator showing the expert elicitation interface.
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undertaking uncertainty or sensitivity analysis (Oakley and
O’Hagan, 2004).

Uncertainty analysis involves describing the distribution of the
outputs given a particular distribution on the inputs, which might
Fig. 5. A screen capture of the elicitator showing the pooling of expert judgments.
include some of the inputs being fixed, i.e., assumed to be perfectly
known. Uncertainty analysis is typically achieved using Monte
Carlo techniques although screening methods as proposed in
Morris (1991), or other local methods (Hill and Tiedeman, 2007)
can also provide useful insights into themodel response. Sensitivity
analysis involves understanding the model’s response to variation
in inputs, and can take many forms, including local methods based
on derivatives (Hill and Tiedeman, 2007) and global methods,
based on variance (Saltelli et al., 2010). Variance-based sensitivity
analysis is generally regarded as being more useful, since it allows
users to apportion the proportion of variance in the output distri-
bution explained by inputs, and their interactions over thewhole of
the realistic input space. It is however necessary to acknowledge
that local sensitivity analysis methods based on locally linearising
the model, while potentially susceptible to errors that arise from
strong non-linearities in model response can prove useful in
complex models as part of an exploratory analysis (Campolongo
et al., 2007) and can be used, for example, to assess the ability of
observations to inform parameters (Foglia et al., 2009) and
predictions (Tiedeman et al., 2004; Water Resources Research;
Moore and Doherty, 2005 WRR; Tonkin et al., 2007; USGS report).

A problem with the Monte Carlo methods used for variance
based sensitivity analysis, particularlywhen applied tomodels with
large run times, is the time required to undertake such an analysis
(O’Hagan, in press). One possible means to address computational
costs is to employ emulator technology (Shahsavani and Grimvall,
2011). Emulation involves creating a statistical surrogate model of



Fig. 6. The main steps in constructing an emulator. For each stage, including the optional screening step, the methods supported within UncertWeb are listed.
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the underlying model. The surrogate mode is fast to evaluate and
can be used in place of the original model as long as the additional
‘emulator uncertainty’ is accounted for in its usage. The ongoing
MUCM project31 has developed emulation techniques so they can
be applied to a wider range of models although limitations remain
(see the MUCM toolkit32 for details, and references therein).

At present emulation methods are most effective when a small
number of outputs are being considered, which are real-valued.
Very large numbers of outputs require multivariate emulation,
which entails describing a complex high dimensional conditional
probability distribution. Discrete valued variables require further
development of the emulation theory which is mainly based on
Gaussian processes (e.g., O’Hagan, 2006) thus assumes a continu-
ously (and often smoothly) varying continuous valued output.
Typically one considers emulation for a small number of summary
outputs, which might be some combination of all the model
outputs, for example the average temperature over a region, or the
proportion of a given land use type in a given area over a given time
period. If it is necessary then it is possible to build multi-output
emulators (Urban and Fricker, 2010; Conti and O’Hagan, 2010)
however these are generally rather complex and often it is better to
build many very accurate individual emulators e these will capture
the joint response of the outputs, just not the joint emulator
uncertainty on the outputs, which will typically be very small by
design.

Building an emulator for a computer model, whether exposed as
a workflow, a Web Service or a single machine executable is
a complex process. There are several steps each involving complex
judgements, ideally informed by the model owners/builders. The
main steps in constructing an emulator for a given workflow, also
depicted in Fig. 6, are:

� Elicit input ranges and uncertainties e often uncertainties on
model inputs will not be known, making it necessary to elicit
expert beliefs about the values of these inputs. This task is
supported by elicitation methods discussed in Section 5.3.1.

� (Optionally) find important inputs e using a process known as
screening (Morris, 1991), identify inputs that have significant
effect on the model output(s) of interest. Identifying inconse-
quential inputs allows the reduction of the dimension of the
input space, thus having a positive effect on emulator
complexity and training efficiency.

� Design the training set ewith a sampling method such as Latin
Hypercube (Santner et al., 2003), a set of points to cover the
input space is generated. The model is then run at these points,
producing a training set of inputeoutput pairs.
31 http://www.mucm.ac.uk/ last accessed 07/05/2011.
32 http://www.mucm.ac.uk/toolkit/ last accessed 07/05/2011.
� Train the emulator e an emulator is typically a Gaussian
process consisting of a mean function, covariance function, and
a set of parameters. Training typically employs Bayesian
inference (O’Hagan, 2006). Once an emulator is trained, it can
be saved in a portable format such as XML or JSON.

� Validate the emulator e validation is essential to ensure the
probabilistic judgements represented are correct (Bastos and
O’Hagan, 2008). If validation results are unacceptable, param-
eters can be adjusted and training can be restarted.

� Use the emulator e the emulator can be used for uncertainty
analysis, sensitivity analysis, calibration, forecasting and deci-
sion making (O’Hagan, 2006). In the uncertainty-enabled
Model Web it will be possible to use this emulator as you
would any other model component.

Several practical implementation issues are addressed when
developing a user driven tool to construct an emulator for a Model
Web component.

� The tool must be able to read descriptions of model inputs and
outputs, and perform runs for training and validation. For this
to be possible without requiring specific code, each Web-
enabled model must be exposed in a standard way. As the
tool will be building service requests, this includes any inputs
and outputs. The service and information model profiles
developed within UncertWeb aim to facilitate this interopera-
bility. Screening, training and validating an emulator requires
several hundred runs of the model. If this model takes minutes
or even hours to compute, it is impractical to require a user to
keep a web-based program running for this time. Moving this
responsibility to the server allows the tasks to be run inde-
pendently of client state, but also introduces resource
management and reliability issues. Mechanisms for asynchro-
nous execution have been developed to queue tasks if
resources are unavailable, and resume tasks in the event of
system failure.

� Constructing an emulator requires several choices to be made.
Some of these choices can be set to default values, and some of
those default values may be changed by expert users. Providing
this vast array of options leads to usability challenges. A user
could be overwhelmed if they are required to make too many
choices, or an expert user may not feel as though they have
enough control over the construction process.

In theory it is possible to greatly speed up the computation of
uncertainty and sensitivity analysis using emulators, and they are
likely to prove particularly effective in distributed modelling
frameworks where the emulators can be invoked just as any other
model component, but can also be transported easily as JSON or
XML, and run almost instantly. Of course not all models will be

http://www.mucm.ac.uk/
http://www.mucm.ac.uk/toolkit/


Table 4
Types of uncertainty visualisation tools implemented in UncertWeb for combinations of measurement scale and space-time variability.

I. Continuous-numerical II. Categorical

A. non-spatial, non-temporal 1. graph of the probability density or cumulative distribution (e.g., Fig. 5)
2. error bar, interquartile range, confidence interval, box plot

1. graph of probability distribution
2. pie chart, stacked bars, bar chart

B. spatial 1. adjacent maps of the mean and standard deviation; adjacent
maps of the lower and upper limits of a confidence interval

2. maps of multiple realisations (draws from the probability
distribution) in one frame

3. masking or whitening of areas with large uncertainty
4. interactive facility to apply techniques from category A1

at selected point locations in map
5. animations of realisations

1. adjacent maps of the category with maximum
probability and the associated probability

2. map of the category with maximum probability
but masked, whitened or blinking when the
probability is below an (interactive) threshold

3. entropy map
4. interactive facility to apply techniques from

category A2 at selected point locations in map
C. temporal 1. graphs of mean, lower and upper limits of confidence

interval, or error bars against time
2. multiple realisations plotted in one figure
3. interactive facility to apply techniques from

category B1 at selected time points

1. graph of category with maximum probability
but masked, whitened or blinking when the
probability is below an (interactive) threshold

2. graph of entropy
3. interactive facility to apply techniques from

category B2 at selected time points
D. spatio-temporal 1. interactive facility to apply techniques from

category B1 at time points
2. interactive facility to apply techniques from

category C1 at point locations in map

1. interactive facility to apply techniques from
category B2 at time points

2. interactive facility to apply techniques from
category C2 at point locations in map

33 http://www.jstat.org/ last accessed 8/5/11.
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amenable to emulation, and it is envisaged that often it will be
more appropriate to emulate a workflow linking several model
components directly, not just single model instances. Several
classes of model are currently not amenable to emulation,
including models with discrete valued outputs, models with
discontinuous outputs (with respect to variation in inputs) and
models with very large numbers of inputs and outputs. Such
models require very case specific emulation methods which are not
currently supported within UncertWeb.

It is not always clear that construction of an emulator can be
justified. Extensive examples of the successful utilisation of
emulators in modelling studies can be found, for example, in the
references in Kennedy et al. (2006). However the construction of
an emulator itself is expensive, requiring many model runs to be
made. There will be cases where the expense of constructing an
emulator cannot be justified, but this will also mean that a formal
uncertainty or variance based sensitivity analysis will be rendered
impossible (very large/slow to evaluate model, in which case local
methods could be considered) or trivial (very small/fast to eval-
uate model). We do not imagine that emulators will be appro-
priate or required for all workflows, but we do anticipate that they
will in some cases enhance our ability to characterise and use
models.

5.3.4. Visualisation
Communication and visualisation of results and associated

uncertainties produced by UncertWeb requires a systematic
approach that incorporates contributions from cognitive science as
well as statistics. A large body of literature and methods are
available (e.g., Wittenbrink et al., 1996; Pang et al., 1997;
MacEachren et al., 2005; Kardos et al., 2007; Van de Kassteele
and Velders, 2006; Garlandini and Fabrikant, 2009; Wood et al.,
2009) and existing state-of-the-art techniques will therefore be
implemented in the UncertWeb visualisation tool.

For visualisation of uncertainty it is sensible to distinguish
between uncertain phenomena that are measured on a continuous-
numerical scale (e.g., precipitation, concentration of air pollutants,
income per head) and those measured on a categorical scale, whose
groupings may have no numerical meaning or ranking (e.g., soil
type, land cover, age group). Also, it matters greatly whether the
phenomenon varies in space, in time, in both space and time, or is
constant in space and time (Heuvelink et al., 2007). Hence, the
various uncertainty visualisations can be conveniently presented in
a two-dimensional table. The main techniques that will be imple-
mented in UncertWeb are given in Table 4.

For phenomena that vary neither in space nor in time, standard
presentation formats such as boxplots, pie charts and graphs of the
probability distribution (e.g., the jstat Javascript library33) will be
used. For spatially distributed phenomena, either static displays
with adjacent maps or animations of realisations will be provided.
The option to mask or whiten parts of the study area that are too
uncertain will also be provided. A very useful option is for Web-
based interactive visualisation to allow the user to select loca-
tions at which visualisation techniques developed for non-spatial
and non-temporal variables can be applied. Uncertainty in
dynamic variables can be displayed similarly to uncertainty in
spatial variables, with additional possibilities, such as displaying
multiple realisations against time in a single figure. This method
does not apply to uncertain spatial variables, but in that case
multiple realisations can be shown in animation mode. Finally, for
space-time phenomena the only feasible options are to let users
select locations or time points (slices) to which any of the uncer-
tainty visualisation techniques for spatial or temporal variables will
then be applied.

Overall, the set of tools being developed in UncertWeb and
explained in Section 5.3 describe a minimal requirement for tools
that should be available to a modelling framework which claims to
provide practical uncertainty support.

6. Discussion and conclusions

Existing modelling frameworks address uncertainty to variable
extents, and there are important lessons for the Model Web: for
example, easy-to-use tools which clearly describe their assump-
tions and requirements can encourage users to assess, record and
use uncertainty information at all stages of the modelling process.
Reliable communication of uncertainty information between
diverse models, across disciplines, will avoid the bottlenecks
where rich and useful uncertainty information can be lost to the
decision maker. Tools to assist with the visualisation of uncer-
tainty can help to communicate this information to a range of
different users whose needs may be very different (Davis and
Keller, 1997).

http://www.jstat.org/
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Existing modelling frameworks also have varying levels of
interoperability, with some being strongly specialised to specific
domains, or specific types of problem, for example time-stepping
models in the OpenMI framework. Interoperability itself is
a complex topic and can in any case be achieved at a number of
methods. We would argue that one might consider the following
levels of interoperability:

1. Machine encoding interoperability e a common underlying
representation of basic data values, e.g., big-endian or byte
order assumptions, often IEEE standards based.

2. Format encoding interoperability e use of a common data
format which specifies, for example, header structure or the
order of elements, delimiters and tags. Examples are NetCDF,
GML and O&M application schema, shapefile, etc.

3. Semantic dictionary interoperability e understanding of the
meaning of the data values, based on semantics/ontologies, for
example RDF/OWL. This is ’hardwired’ semantics via
a dictionary.

4. Semantic machine interoperability e the real goal of semantic
integration where machines can ’understand’ concepts and
reason with them, typically without resorting to a central
controlled vocabulary.

5. Information interoperability e here, the relation of the data to
reality is quantified so that the data can be used appropriately
in a given application. At present this is little addressed.

To achieve information interoperability it is necessary to quan-
tify the information (or uncertainty) in all aspects of the modelling
operation. No existing modelling frameworks provide a complete
solution to managing uncertainty. We contend that information
interoperability, i.e., the ability not just to share data and models,
but to actually base rational decisions and policy on the outcomes
from these integrated modelling frameworks, requires a rigorous
and consistent definition of uncertainty and a framework that can
manage this from end to end.

When addressing uncertainty, a probabilistic approach seems
most natural (Dawid, 2004; O’Hagan, in press) although other
approaches such as fuzzy set theory and Generalised Likelihood
Uncertainty Estimation (Beven and Freer, 2001) are also applied.
Other coherent frameworks for managing uncertainty, for example
Bayes Linear (Goldstein and Wooff, 2007), and imprecise proba-
bility (Reichert, 1997) also deserve attention. These frameworks
have attractive features, in that they require fewer assumptions to
be used (for example Bayes Linear methods work with expectation,
not full probability distributions), but then enable one to make
weaker statements as a result (since one only has expectations,
including some higher order judgements).

All quantitative approaches also have limitations; ‘unknown
unknowns’ will always require a qualitative treatment, and in
simulations of social systems the issue of human choice and free
will make modelling particularly challenging, and uncertainties
still more challenging to quantify. Even for environmental models
of systems that are reasonably well understood, for example the
Earth’s atmosphere, obtaining reliable uncertainty estimates for
inputs and model structure uncertainty is an open research
problem. Expert elicitation can assist in the determination of
subjective uncertainty on unobserved model inputs and more
rigorous and precise uncertainty estimation for observations can
assist in characterising the uncertainty on other inputs. As dis-
cussed in Section 2.2, careful validation of uncertainty judgements
should be undertaken whenever possible using appropriate prob-
abilistic methods (Gneiting et al., 2007).

In order for a modelling framework to support probabilistic
uncertainty it is necessary that:
� a model for probabilistic uncertainty be defined for commu-
nication between all components including model and data
resources (in this work, this model is UncertML);

� uncertainty should be propagated through model components
by an appropriate mechanism (typically Monte Carlo) with
minimal change to the model component;

� where necessary, conversions between different representa-
tions of probabilistic uncertainty (e.g. a probability distribution
to samples) should be automated;

� changes of spatial, temporal and spatio-temporal support
should be provided which also propagate uncertainty;

To make the framework accessible to a variety of users tools
which permit the following operations would be beneficial:

� expert elicitation of uncertain inputs;
� automated method to assess uncertain inputs where observa-
tions exist, based on statistical inference;

� uncertainty and sensitivity analysis;
� visualisation of uncertain variables across space, time and
space-time;

� probabilistic validation of the outputs of the chains when
observations are available.

To address the computational issues it will be necessary to
consider parallelism and cloud based deployment, and also the use
of emulators, or statistical surrogate models, which can be
deployed easily on Web Services in a semi-automated manner, and
can be built either for model components or sections of the
complete workflow.

Many computational, theoretical, architectural and user interac-
tion issues remain to be addressed before a comprehensive frame-
work formanaging uncertainty can become a reality. The UncertWeb
modelling framework representsanattempt to addressmanyof these
issues and to push the boundary of what can practically be achieved
closer to a complete uncertainty management system. Further
development of the UncertWeb framework could be envisaged to
develop tools to assist with inferential (or estimation) problems such
as data assimilation and model calibration (parameter estimation).
Manyof thegeneric calibrationanduncertaintyevaluation tools listed
in Table 2 provide useful and tested methodologies to enhance
uncertaintymanagement, andaconcertedeffort to integrate themost
widely-used methods from these tools into an interoperable archi-
tecture such as that of UncertWebwould be most beneficial to all.

Ultimately it seems natural that we should be considering
computers whose basic types include not only floats, integers etc.,
but also the equivalent continuous and discrete random variables,
in their many representations. Ruckdeschel et al. (2006) provide an
implementation of this idea in the R environment. This would
represent an ambitious but important paradigm shift, fromviewing
uncertainty information as metadata which is attached to a quan-
tised or estimated value and may be ignored or discarded, to using
uncertainty itself as the fundamental element for computation and
modelling.
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