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Change of support (COS)

“Support” is the physical size and temporal duration of that, where
a measurement or prediction refers to.

All approaches to spatial and spatiotemporal data adopt some kind
of stationary model for the data, e.g.

Z(s)=p+e(s), Z(s)~N(uX)

with ¥4 = Cov(Z(s;), Z(s;)), leading to the simple kriging / BLP
equations

Z(s0) = n+ 303" (Z(s) — )
Var(Z(s0) — Z(s0)) = 03 — $oX "%

where element i of Xy equals Cov(Z(s;), Z(s0))-
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Change of support (COS) - 2

Block kriging estimates the “block” mean value

2(Bo) = |B|™! /B 2 (u) du

by R
Z(Bo) = p+ 0% (Z(s) — )
(B

Var(Z(By) = Z(Bo)) = 055 — Lo=~ ' %o

when replacing
» Cov(Z(si), Z(sp)) with
Cov(Z(s;), Z(Bo)) = |B|™* [ Cov(Z(si), Z(u))du
> 0% with G%(B) =|B|72 [ [5 Cov(Z(u), Z(v))dudv
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COS: What is it?

library(sp)
library(spacetime)
data(air) # loads stations, dates, air, DE_NUTS1
rural = STFDF(stations, dates,

data.frame(PM10 = as.vector(air)))

utm32N = CRS("+proj=utm +zone=32 +north +datum=WGS84")
rural = spTransform(rural, utm32N)
DE_NUTS1 = spTransform(DE_NUTS1, utm32N)
library(rgeos)
DE = gUnionCascaded (DE_NUTS1)
plot (DE)
Niedersachsen = DE_NUTS1["Niedersachsen",]
plot(Niedersachsen, col = grey(.8), add = TRUE)
points(as(rural, "Spatial"), col = 'red')

r = rural[ , "2009-01-10"]

(sample_mean = as.data.frame(

aggregate(r, Niedersachsen, FUN = mean, na.rm = TRUE)))

+VVVVVVVVVVV++VVVYV

PM10
Niedersachsen 21.677




COS: What is it? — 2

> r = r[lis.na(r$PM10),]

> library(gstat)

> v = variogram(PM10~1, r)

> (f = fit.variogram(v, vgm("Exp")))

model psill range
Nug 0.00 0
Exp 352.75 92427

N

> plot(v, f)

> pts = spsample(Niedersachsen, 500, "regular",
+

>

offset = ¢(.5,.5))
k1 = krige(PM10~1, r, pts, f) # 500 points

[using ordinary kriging]

> c(mean(ki$varl.pred), mean(ki$varl.var), var(ki$varl.pred))
[1] 22.558 203.103 46.955

> k2 = krige(PM10~1, r, Niedersachsen, f) # 1 block

[using ordinary kriging]

> as.data.frame(k2)[,3:4]

varl.pred varl.var
Niedersachsen 22.558 35.383

> sample_mean

PM10
Niedersachsen 21.677



COS: history

1960’s: mining industry, D. Krige, G. Matheron
motivation: measurements are cores, ‘minable units’ are
blocks.
other “mining remains™:
» “kriging” — Danie G. Krige was a South-African mining engineer
» “nugget effect” sudden, dramatic variations over short
distances
» dominant use of the (semi)variogram, rather then the
covariogram

observed “blocks” data: socio-economic, population, satellite
generated “blocks” data: GCM's, weather models

Cressie: for non-linear g(-), [ g(Z(s)) # g([(Z(s)))

in “point data”, what does the word “point” mean?

Spatial Statistics: “areal or lattice data”

ecological regression: build models from (spatially) aggregated
data
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Spatial Data
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Landsat 8 data

» Landsat 8, Goéttingen area, 9-3-16

» http://earthexplorer.usgs.gov/ ; free registration, download
trivial

» format: georeferenced jpeg; Coordinates in UTM

> 30 m x 30 m pixels;

» extent: & 8000 x 8000 pixels, = 240 km x 240 km

» 7 spectral bands; took (default) RGB composite;

» “scene” imported and plotted by R:

> library(rgdal)
> r = readGDAL("LC81950242016069LGN0O. jpg")

LC81950242016069LGN00. jpg has GDAL driver JPEG
and has 7991 rows and 7881 columns

> image(r, red = "bandl", green = "band2", blue = "band3")
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Where are we?

> g = readOGR("Goettingen-shp/shape", "buildings")

OGR data source with driver: ESRI Shapefile
Source: "Goettingen-shp/shape", layer: "buildings"
with 105184 features

» OpenStreetMap is a data set It has 3 fields
with roads, buildings, and other > projéstringe)
many thlngs [1] "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +t

. e > ZHG = subset(g, osm_id == 115376791) # ZHG
> after searching for “Gottingen > plot (ZHG, axes = TRUE)

shapefile”, | found that Bike
friends had cut it in pieces
convenient for tourists

http:
//download.bbbike.org/osm/bbbike/Goettingen/

» | downloaded the Géttingen area
as a shapefile, and identified the
ZHG building (ID 115376791)
using Quantum GIS (an open
source, interactive GIS).

51.541°181.541°191.541°1$1.542°11.542°1$1.542°N

T T T T
9.935°E  9.9355°E  9.936°E  9.9365°E


http://download.bbbike.org/osm/bbbike/Goettingen/
http://download.bbbike.org/osm/bbbike/Goettingen/

... in the “context” of Landsat 87

> proj4string(r)
[1] "+proj=utm +zone=32 +datum=WGS84 +units=m +no_defs +ellps=W

> ZHG = spTransform(ZHG, CRS(proj4string(r)))
> bbr = bbox(r)

> bbz = bbox(ZHG)

> #y, rows:

> (bbr[2,2] - (bbz[2,1] + 30 * 20))/30

[1] 4514.7

> # x, cols:
> ((bbz[1,1] - 30 * 20) - bbr[1,1])/30

[1] 4449.2

> r0 = r[4514:4554, 4449:4490]

> par(mar = ¢(0,0,1,0))

> image(r0, red = "bandl", green = "band2",
+ blue = "band3")

> plot(ZHG, border = 'red', add=TRUE)




... and what is the color of our roof?

> fullgrid(r0) = FALSE

> image (r0[ZHG, ,drop=TRUE],

+ red = "bandl", green = "band2", blue = "band3")
> plot(ZHG, border = 'red', add=TRUE)




Roof color:

Compute mean of:
Intersection, area

Intersecting centres: Intersecting cells: .
& 8 weighted:




Roof color:

Compute mean of:
Intersection, area

Intersecting centres: Intersecting cells: .
& 8 weighted:

all answers are FALSE



Generalizing block kriging

When data are blocks, (how) can we estimate (i) arbitrary blocks
and (ii) point values (disaggregation)?

Z(B) = p+e(B), Z(B)~N(u,%)
with ¥4 = Cov(Z(B;), Z(Bj)), which equals

|B;| 7 B;|~ 1/ / Cov(Z (v))dudv
Bj

Z(Bo) = pu+ DS 7H(Z(B) — p)
and where element i of ¥y equals Cov(Z(B;), Z(By)).

and
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This still needs the “point-to-point” covariance. How to infer this
from block-only data?
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Generalizing block kriging
When data are blocks, (how) can we estimate (i) arbitrary blocks
and (ii) point values (disaggregation)?
Z(B) = p+ e(B), Z(B) ~N(1,%)
with ¥4 = Cov(Z(B;), Z(Bj)), which equals

|B;| 7 B;|~ 1/ /BJ Cov(Z(u), Z(v))dudv

Z(Bo) = pu+ DS 7H(Z(B) — p)

and where element i of ¥ equals Cov(Z(B;), Z(By)).

This still needs the “point-to-point” covariance. How to infer this
from block-only data?

= what does a point covariance mean, when the process is
discrete (e.g. population counts)?

and
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Temporal Data
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Time aggregation: PM10 data

> library(spacetime)

> data(air)

> rural = STFDF(stations, dates,

+ data.frame(PM10 = as.vector(air)))
> class(rural)

[1] "STFDF"
attr(, "package")

[1] "spacetime"

> pm10 = rural[1,"2001::2006"][,1]
> class(pm10)

[1] "xts" "zoo"

> station = row.names(rurall,1])[1]
> class(index(pm10))

[1] "Date"

> plot(pm10, main = station, ylab = "PM10")

PM10

150

100

50

DESHO001

Jan 01

2001

T
Jan 01
2002

T
Jan 01
2003

T
Jan 01
2004

T
Jan 01
2005

T
Jan 01
2006

T
Dec 31
2006



Time aggregation

> yr = with(as.POSIX1t (index(pm10)), 1900 + year)
> pm10.yr = aggregate(pm10, yr, na.rm = TRUE)
> class(pm10.yr)

[1] "zoo"
> pm10.yr

2001 8270
2002 8389
2003 9236.
2004 7066
2005 7059
2006 7348.

MR A RO



Time aggregation

> yr = with(as.POSIX1t (index(pm10)), 1900 + year)
> pm10.yr = aggregate(pm10, yr, na.rm = TRUE)
> class(pm10.yr)

[1] "zoo"
> pm10.yr

2001 8270
2002 8389
2003 9236.
2004 7066
2005 7059
2006 7348.

MR A RO

ehm



Time aggregation .. 2

DESHO001

> yr = with(as.POSIX1t (index(pm10)), 1900 + year) &
> pm10.yr = aggregate(pm10, yr, FUN = mean, na.rm = TRUE)
> plot(pm10.yr, main = station, ylab = "PM10")

> pm10.yr

25
I

2001 23.296
2002 23.175
2003 26.541
2004 21.220
2005 20.947
2006 21.116

24
I

yearly mean PM10

> class(pm10.yr)

22

1] "zoo"
> class(index(pm10.yr))

[1] "numeric"

T T T T T
2001 2002 2003 2004 2005 2006

Index



Time aggregation .. 3

DESHO001

yr.POSIXct = strptime(paste0(index(pm10.yr), "-01-01"),
format = "JY-)m-%d", tz = "UTC")

library(xts)

pm10.yr = xts(pm10.yr, yr.POSIXct)

plot(pm10.yr, main = station, ylab = "PM10")

pm10.yr

VVVYV+yV

25
L

X
2001-01-01 23.296
2002-01-01 23.175
2003-01-01 26.541
2004-01-01 21.220
2005-01-01 20.947 o
2006-01-01 21.116

24
L

yearly mean PM10

> class(pm10.yr)

22

[1] "xts" "zoo"

> class(index(pm10.yr)) o

[1] "POSIX1t" "POSIXt" Jan Jan Jan Jan Jan Jan
2001 2002 2003 2004 2005 2006




Meaningful spatial statistics

CO, emissions of power plants Sum of CO, emissions Interpolated CO, emissions

406842798.1074

PM;o measurements Sum of PM;y measurements Interpolated PM;o measurements

944.954
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Spatial data bases: PostGIS view

user=# select * from co2 limit 3;

pk | plant_id | name | carbon_2007 | location

B Fmmm +- +
1| 20075 | JANSCHWALDE | 27400000 | POINT(14.45305 51.83248)
2 | 14153 | FRIMMERSDORF | 24100000 | POINT(6.575827 51.0547)
3| 31142 | NIEDERAUSSEM | 30400000 | POINT(6.668831 50.99228)

(3 rows)

user=# select * from pml0 limit 3;

pk | station | time | pm10 | location

s +-—= + -
1 | ATOENK1 | 2005-06-01 | 14 | POINT(13.67111 48.39167)
2 | AT30202 | 2005-06-01 | 9.7 | POINT(15.91944 48.10611)
3 | AT45108 | 2005-06-01 | 7.8 | POINT(14.57472 48.53111)

(3 rows)

7
8
user=# select * from geometry_columns;

f_table_name | f_geometry_column | dim | srid | type
______________ +___ p—— 1', +

+

pmi10 | location |

2 | 4326 | POINT
co2 | location | 2 |

4326 | POINT



Choropleth: aggregate values per polygon

o

100-200
200-500
500-1000
1000+

= = = = 9Dae
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Coverage: “every” point is mapped

- Forest
- Pastures and valley

farming

| Permanent crops
(olives, grapes, and citrus)

- Mixed farminE
(grains, horticulture

wineyards, and livestock }

& Tobacco
1] 50 Hilometers
—_—
1] 50 Miles

Qe

29 /44



EEA Report | No 4/2012

Air quality in Europe — 2012 report

1S5N 1725-9177
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European Environment Agency. '%L)S



Particulate matter time series, averaged over station
type

PM,, annual mean (ug/m?) PM, ; annual mean (ug/m?®)
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0 0
2000 2002 2004 2006 2008 2010 2004 2005 2006 2007 2008 2009 2010 2011
= Rural = Urban = Traffic = Rural = Urban = Traffic
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Modelling spatiotemporal information generation

» Scientists create a lot of data, but how do we discover data
they created, and how do we advertise data we create
ourselves?

» Jim Frew's laws of metadata: (i) scientists don't write
metadata, (ii) scientists can be forced to write bad metadata.

» Much of data description focuses when, where and what
questions (semantics), less so on how and why (pragmatics)

» We developed an algebra for information generation (i.e., the
how), using functions composed of reference systems.

» We hope this can help solve the discovery problem.

32 /44



INTERNATIONAL JOURNAL OF CLIMATOLOGY
Int. J. Climatol. 25: 1965-1978 (2005)
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/joc.1276

VERY HIGH RESOLUTION INTERPOLATED CLIMATE SURFACES FOR
GLOBAL LAND AREAS

ROBERT J. HUMANS,** SUSAN E. CAMERON,*? JUAN L. PARRA,* PETER G. JONES® and ANDY JARVIS®¢
* Museum of Vertebrate Zoology, University of California, 3101 Valley Life Sciences Building, Berkeley, CA, USA
b Department of Environmental Science and Policy, University of California, Davis, CA, USA; and Rainforest Cooperative Research
Centre, University of Queensland, Australia
© International Center for Tropical Agriculture, Cali, Colombia
d International Plant Genetic Resources Institute, Cali, Colombia

Received 18 November 2004
Revised 25 May 2005
Accepted 6 September 2005

ABSTRACT

‘We developed interpolated climate surfaces for global land areas (excluding Antarctica) at a spatial resolution of 30 arc s
(often referred to as 1-km spatial resolution). The climate elements considered were monthly precipitation and mean,
minimum, and maximum temperature. Input data were gathered from a variety of sources and, where possible, were
restricted to records from the 1950—2000 period. We used the thin-plate smoothing spline algorithm implemented in the
ANUSPLIN package for interpolation, using latitude, longitude, and elevation as independent variables. We quantified
uncertainty arising from the input data and the interpolation by mapping weather station density, elevation bias in the
weather stations, and elevation variation within grid cells and through data partitioning and cross validation. Elevation
bias tended to be negative (stations lower than expected) at high latitudes but positive in the tropics. Uncertainty is
highest in mountainous and in poorly sampled areas. Data partitioning showed high uncertainty of the surfaces on
isolated islands, e.g. in the Pacific. Aggregating the elevation and climate data to 10 arc min resolution showed an
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Maintaining knowledge about the provenance of datasets, that is, Received 1 September 2015
about how they were obtained, is crucial for their further use. ~ Accepted 2 February 2016
Contrary to what the overused metaphors of ‘data mining’ and ‘big

7 X P ) h . KEYWORDS
data’ are implying, it is hardly possible to use data in a meaningful Spatiotemporal data types;
way if information about sources and types of conversions is dis- data generation; provenance

carded in the process of data gathering. A generative model of model; algebra
spatiotemporal information could not only help automating the
description of derivation processes but also assessing the scope of
a dataset’s future use by exploring possible transformations. Even



Basic types

Basic reference system types and simple derivations thereof. Each type needs
to go along with its reference system (RS).

P denotes the power set (set of all subsets).

Symbol | Definition Meaning Description

S R3 Set of possible spatial locations with RS.

T R Set of possible moments in time with RS.

D N Set of possible discrete entity identifier with RS.

Q R Set of possible observed values with RS.

R S set P(S) Set of regions: bounded by polygons, or col-
lection of isolated locations and combinations
thereof.

1 T set P(T) Set of collections of moments in time: contin-
uous intervals or a set of moments in time or
combinations thereof.

D set D set P(D) Sets of object identifiers
Q set Q set P(Q) Sets of quality values.
bool {T,F} Boolean, also used to express predicates for se-
lection
Extent Rx1I Rx1I set of spatio-temporal extent as the orthogonal
product of the spatial and temporal projections
Occurs | (S x T) set P(S x T) set of spatio-temporal subsets, occurrences of

events and objects, but also of certain values or
conditions in a field; footprint, support
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Data Generation Types

Symbol Type definition  Description
Field SXT=Q spatio-temporal field
Lattice R=1=Q spatio-temporal lattice
Event D=SxT spatio-temporal events
Trajectory T=1S5 trajectory
Objects D=T=3S5 objects in time and space
LatticeT S=1=Q spatial temporal lattice
BlockEvent D = Extent events affecting a set of locations and lasting for sor
RegionalTrajectory | T = R trajectory of regions
BlockObjects D=1=R objects in space and time defined over regions and c
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Data derivation



Data derivation: generating field data
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Data derivation: spatial/temporal aggregation




Data derivation: deriving objects from fields

>
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GenerationType |

inv
comb
comp
curry
objident

Derivation function

(Algebra)

enerationType [«

Sect.
3.2/13.3

Tessel
Field
Lattice
Object
Trajectory

BasicType

S (Space ref)
T(Time ref)
D (Object ref)
Q (Quality ref)
tuple/set type

input of

A

output

of Type

Data generation function

of Type

input of

map
- >( Data generator ) gendata
input of
Sect. 4
output
input of output

Referent

represented by

Data: Set/list of tuples



How smart is R?

» R does have factor and ordered for nominal and ordinal
variables, but does not support interval or ratio variables.

» R has no support for measurement units.

» R aggregate functions can't check whether its variable is
extensive (sum) or intensive (mean)

» R supports time (Date, POSIXt and time zones), but not time
intervals

» Package lubridate does this, but does not support time
series data, similar to zoo or xts do.

» spacetime compensates (somewhat) for this

» sp and rgdal support coordinate reference systems,
interoperably

» z00, sp, spacetime let you aggregate data over time and/or
space, but do not annotate returned objects that they are the
result of aggregation.
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Software challenges (Discussion/Conclusions)

How smart should software be?

>

>

>

COS is everywhere, but it's not registered with our data.
How can | find datasets generated using procedure y?
Which analysis could | apply to dataset x, or avoid?

R scripts convey syntax and numerical manipulation, only
implicit semantics

Many R functions could trivially annotate returned objects
with meaningful bits

Instead of points/lines/grids/polygons, we need

field /lattice/event/trajectory/object

For meaningful discovery, R should (optionally and
automatically) write metadata describing data provenance

We will next try to implement some of the concepts mentioned
above in R (possibly using CXXR, Silles and Runnalls)
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Software challenges (Discussion/Conclusions)

How smart should software be?

>

>

>

COS is everywhere, but it's not registered with our data.
How can | find datasets generated using procedure y?
Which analysis could | apply to dataset x, or avoid?

R scripts convey syntax and numerical manipulation, only
implicit semantics

Many R functions could trivially annotate returned objects
with meaningful bits

Instead of points/lines/grids/polygons, we need

field /lattice/event/trajectory/object

For meaningful discovery, R should (optionally and
automatically) write metadata describing data provenance

We will next try to implement some of the concepts mentioned
above in R (possibly using CXXR, Silles and Runnalls)

Thank you!
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