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SUMMARY

In the Dutch sector of the North Sea, sea bird densities are recorded bi-monthly by using airborne strip-
transect monitoring. From these data we try to estimate: (i) high-resolution spatial patterns of sea bird densities;
(ii) low-resolution spatial-average bird densities for large areas; and (iii) temporal changes in (i) and (ii), using
data on Fulmaris glacialis as an example. For spatial estimation, we combined Poisson regression for modelling
the trend as a function of water depth and distance to coast with kriging interpolation of the residual variability,
assuming spatial (co)variances to be proportional to the trend value. Spatial averages were estimated by block
kriging. For estimating temporal differences we used residual cokriging for two consecutive years, and show how
this can be extended to analyse trends over multiple years. Approximate standard errors are obtained for all
estimates. A comparison with a residual simple kriging approach reveals that ignoring temporal cross-correlations
leads to a severe loss of statistical accuracy when assessing the significance of temporal changes.This article
shows results for Fulmaris glacialis monitored during August/September in 1998 and 1999. Copyright # 2005
John Wiley & Sons, Ltd.
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1. INTRODUCTION

The Dutch sector of the North Sea (NCP) is an important habitat for several sea bird species. In 1984,

the Dutch National Institute for Coastal and Marine Management (RIKZ) started a programme for the

systematic airborne monitoring of sea birds over the NCP. At present, the monitoring programme is

carried out bi-monthly. The main aim of this programme is to obtain information about the spatial

distribution of sea bird density and temporal changes in spatial patterns. The actual observations cover

less than 0.5% of the total area, and statistical estimation is needed to fill in the gaps.
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When estimating spatial patterns, there is a well-known trade-off between spatial resolution and

statistical estimating accuracy (Pebesma and de Kwaadsteniet, 1997; Heuvelink and Pebesma,

1999): either high-resolution spatial predictions can be made that have a low statistical accuracy

(large estimation errors), or low-resolution estimates for large areas can be made with usually a

much higher statistical accuracy. In other words: given a certain amount of measurements, to

increase statistical accuracy, spatial resolution has to be sacrificed. Both low-resolution and high-

resolution approaches may, however, yield valuable results: the high-resolution spatial predictions

may give us the most detail about where the highest or lowest densities are expected, whereas the

low-resolution estimates can be used to accurately assess average densities (or total numbers of

birds) for sensibly chosen larger areas. In this article we compare both, and we will also look at

temporal changes in sea bird densities, both for high-resolution spatial patterns and for low-

resolution estimates.

2. DATA

2.1. External variables

For the estimation of spatial distribution of birds, we would ultimately like to know why birds

prefer to be in specific areas. Outside the breeding season, a major motivation seems to be the

presence of food. If we then knew the abundance of the food for given bird species everywhere on

the NCP, this information would be very valuable to predict bird densities. Variables that were

available in this study and that may serve as proxies to food conditions are distance to the (Dutch)

coast and water depth (Figure 1). These variables may be relevant when predicting densities of

species that prefer shallow water/near coast conditions, or deep water/open sea conditions, or other

combinations.

Figure 1. (a) Distance to coast (m); (b) sea water depth (m)
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2.2. Sea birds

Sea bird data are collected as strip transect counts, using bi-monthly airborne monitoring. Ideally, the

samples for the NCP are taken within three subsequent days. During the monitoring flights, depending

on light and wave conditions either on one or on both sides of the plane, birds visible within a strip of

approximately 150m width are registered for fixed time periods of approximately 1min (Figure 2).

This corresponds to a strip length of approximately 3 km, approximately resulting in a 0.5 km2 single

observation area. For a given species a single ‘observation’ therefore does not correspond to the

observation location of single birds, but to the number of birds observed within a strip that has a known

location and size. Location and size are derived from observation time, flying speed and flight plan co-

ordinates. An example of observed densities for Fulmaris glacialis (Fulmar) is shown in Figure 3. Bird

counts are transformed to bird densities by dividing each count through the corresponding observation

area.

Figure 2. Schematic representation of the airborne monitoring. Flight height is 170m (500 ft, the minimum allowed);

depending on light and wave conditions, monitoring takes either place on both sides or on one side

Figure 3. Observed densities of Fulmaris glacialis during the August/September monitoring of 1998 and 1999 ðkm�1Þ; co-
ordinates are in UTM31. The shaded area is a generalized (outer) coastline
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3. SPATIAL PREDICTION

Although strictly speaking the observations of sea bird densities are taken from a space–time process

yðs; tÞ, with s and t the continuous space and time co-ordinate, the monitoring programme aims at

collecting data at fixed moments in a year, and we will write them as ytðsÞ, stressing that t is an index.
In this study the t subscript always refers to either August/September 1998 or August/September 1999,

which we will abbreviate to t 2 f98; 99g.
For mapping bird densities, the variability of the measurements ytðsÞ is modelled by a structural

component, the trend �tðsÞ, and a random component, the residual etðsÞ:

ytðsÞ ¼ �tðsÞ þ etðsÞ; s 2 fs1;t; . . . ; snt ;tg; t 2 f98; 99g ð1Þ

with s1;t; . . . ; snt ;t the nt data locations of year t. Mapping involves the spatial prediction of ytðs0Þ at any
(unobserved) location s0 and observed time t 2 f98; 99g, or the prediction of the spatially aggregated
(averaged) value of yt over an area B0, ytðB0Þ ¼ 1

jB0j
R
B0
ytðuÞ du with jB0j the area of B0. For this, we

need suitable models for both the trend and the residual.

3.1. Trend model

For modelling the trend in the observed Fulmaris glacialis densities, we looked at the external

variables of sea water depth and distance to the coast. Figure 4 shows that (i) average densities

increased with increasing water depth, and that given water depth (ii) average densities increased with

distance to coast in 1998, and slightly decreased with distance to coast in 1999.

For each year, a Poisson regression model (McCullagh and Nelder, 1989) fitted to the data was:

EðytðsÞÞ ¼ �tðsÞ; logð�tðsÞÞ ¼ �0;t þ �1;tDepthðsÞ þ �2;tDistanceðsÞ;
s 2 fs1;t; . . . ; snt ;tg; t 2 f98; 99g ð2Þ

It further assumes that variance is proportional to mean values:

VarðytðsÞÞ ¼ �t�tðsÞ ð3Þ

with �t the over-dispersion parameter. The regression coefficients, as fitted for each year with the glm
function in S-PLUS (using the quasi distribution family), are shown in Table 1. It should be noted

here that the standard errors and t-values are of little value, as the spatial correlation of observations

was ignored.

At unobserved locations s0 and for a given time t 2 f98; 99g, given the water depth and distance to
coast (Figure 1) and given estimated coefficients �̂�0; �̂�1 and �̂�2, the trend value is estimated by

�̂�tðs0Þ ¼ expð�̂�0;t þ �̂�1;tDepthðs0Þ þ �̂�2;tDistanceðs0ÞÞ ð4Þ

In addition to the predicted value, Poisson regression yields a standard error for �̂�tðs0Þ, ��;tðs0Þ. At
observation locations, residuals can be calculated relative to the trend:

êetðsÞ ¼ ytðsÞ � �̂�tðsÞ; s 2 fs1;t; . . . ; snt ;tg; t 2 f98; 99g ð5Þ
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3.2. Residual spatial correlation

As seen in (3), the variability in residuals is proportional to the mean value of y. For looking at spatial

correlation, we transform residuals to Pearson residuals such that they have a constant variance �t:

rtðsÞ ¼ ytðsÞ � �̂�tðsÞffiffiffiffiffiffiffiffiffiffi
�̂�tðsÞ

p ; s 2 fs1;t; . . . ; snt ;tg; t 2 f98; 99g ð6Þ

Figure 4. (a) Densities for Fulmaris glacialis as a function of year (left: 1998; right: 1999), distance to coast and sea water

depth. Drawn lines denote a loess curve, fitted using standard settings of S-PLUS 6.0; (b) sea water depth classes for the four

rows in (a). Densities were square-root transformed to stabilize their variance
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The residuals from the regression function do exhibit spatial correlation. The Pearson residual sample

variograms,

�̂�tð~hhÞ ¼ 1

2Nh;t

XNh;t

i¼1

ðr̂rtðsÞ � r̂rtðsþ hÞÞ2; t 2 f98; 99g; h 2 ~hh ð7Þ

with Nh;t the number of residual pairs in year t for distance class ~hh, calculated for distance intervals
~hh ¼ f0� 10000m; 10000� 20000m; . . . ; 90000� 100000mg confirm this (Figure 5). In addition, the

1998� 1999 sample cross-variogram (Clark et al., 1989; Cressie, 1993)

�̂�98�99ð~hhÞ ¼ 1

2Nh

XNh

i¼1

ðr̂r98ðsÞ � r̂r99ðsþ hÞÞ2; h 2 ~hh ð8Þ

suggests that the residual patterns of both years are strongly cross-correlated. For modelling the

variograms, we used exponential variogram functions, �ðhÞ ¼ c0 þ c1ð1� expð�h=aÞÞ, with c0 the

nugget, c1 the partial sill and a the range parameter. The coefficients were fitted such that they (i) fitted

the direct variograms best and (ii) complied to the linear model of coregionalization (Chilès and

Delfiner, 1999). For our two-variable case, this model implies that: (i) the ranges are equal for all three

variograms; (ii) jc0;98�99j � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0;98c0;99

p
; and (iii) jc1;98�99j � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c1;98c1;99
p

. Table 2 shows the fitted

variogram and cross-variogram coefficients and Figure 5 shows sample variograms and fitted models.

Given this model for the spatial (cross)-correlation, we can spatially predict the residuals.

3.3. Residual spatial prediction

Although the symbols in Figure 3 cover a fair amount of the surface, the actual measurements together

cover less than 1 per cent of the surface of NCP. We need to predict, or interpolate, the measurements

in order to cover the remaining areas. For spatial prediction we simply add the estimated trend values

�̂�ðs0Þ (4) to the predicted residuals for a single year by

ŷytðs0Þ ¼ �̂�tðs0Þ þ êetðs0Þ; t 2 f98; 99g ð9Þ

and this subsection will explain how we predict êetðs0Þ.

Table 1. Poisson regression coefficients, their standard error and t-value, and dispersion parameters for the
1998 and 1999 trend models of Fulmaris glacialis. Note that standard errors and t-values assume independence,

whereas the data are spatially dependent

Year Parameter Value Std. error t-value

1998 Intercept �4.11 0.373 �11.03
Depth 0.0685 0.00959 7.04
Distance 0.0160 0.00123 12.99
Dispersion 2.178

1999 Intercept �4.47 0.338 �13.22
Depth 0.159 0.0112 14.24
Distance �0.00650 0.00201 �3.24
Dispersion 3.83
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The first, simple approach is to use simple kriging (Cressie, 1993) for each year separately, to

interpolate residuals (5) using the direct variograms of Figure 5. The second approach is to use simple

cokriging (Cressie, 1993), which addresses the cross-correlation between residuals of both years

shown in the cross-variogram of Figure 5: residuals for 1999 are used to predict residual values for

1998, and vice versa.

Figure 5. Residual variograms (top, lower right) and cross-variogram (lower left) for 1998 and 1999 residuals. Distance values

plotted for symbols are average values for each distance interval

Table 2. Variogram (1998, 1999) and cross-variogram (1998� 1999) model
coefficients

Year c0 c1 a

1998 0.85 1.89 50 000
1999 1.76 2.25 50 000
1998� 1999 1.22 2.18 50 000
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For the general simple cokriging case, suppose we havem time slices of observations, stacked in the

vector yðsÞ ¼ ðy1ðsÞ; . . . ; ymðsÞÞT, with T denoting transpose, and we want to predict the m� 1 vector

yðs0Þ ¼ ðy1ðs0Þ; . . . ; ymðs0ÞÞT. The simple cokriging prediction is

ŷyðs0Þ ¼ �̂�ðs0Þ þ v0V�1ðyðsÞ � �̂�ðsÞÞ ð10Þ

with given �̂�ðs0Þ ¼ ð�̂�1ðs0Þ; . . . ; �̂�mðs0ÞÞT, and

v ¼
v1;1 v1;2 � � � v1;m
v2;1 v2;2 � � � v2;m

..

. ..
. . .

. ..
.

vm;1 vm;2 � � � vm;m

2
6664

3
7775;V ¼

V1;1 V1;2 � � � V1;m

V2;1 V2;2 � � � V2;m

..

. ..
. . .

. ..
.

Vm;1 Vm;2 � � � Vm;m

2
6664

3
7775

where element i of the ðnk � 1Þ vector vk;l is CovðykðsiÞ; ylðs0ÞÞ, and where element ði; jÞ of the

ðnk � nlÞ matrix Vk;l is CovðykðsiÞ; ylðsjÞÞ. The corresponding simple cokriging prediction error

covariance matrix is

�ðs0Þ ¼ �0 � v0V�1v ð11Þ

where �0 is the m� m matrix Varðyðs0ÞÞ. These equations reduce to the simple kriging equations

when m ¼ 1.

Both simple kriging and simple cokriging yield a prediction standard error �e;tðs0Þ for êetðs0Þ. Only
cokriging yields the full prediction error covariance, in our case providing Covðêe98ðs0Þ; êe99ðs0ÞÞ (Ver
Hoef and Cressie, 1993).

Given the proportionality of the variance of etðsÞ given in (3), rather than using stationary

covariances or semivariances, we prefer to use non-stationary covariances (Gotway and Stroup, 1997):

CovðykðsiÞ; ylðsjÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðykðsiÞÞVarðylðsjÞÞ

q
CorrðykðsiÞ; ylðsjÞÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�̂�k�̂�kðsiÞ�̂�l�̂l�lðsjÞ

q
CorrðykðsiÞ; ylðsjÞÞ; fk; lg 2 f98; 99g

ð12Þ

where the product of the correlations and dispersion coefficients are derived from Pearson residual

variograms:

ffiffiffiffiffiffiffiffiffi
�̂�k�̂�l

q
CorrðykðsiÞ; ylðsjÞÞ ¼

ffiffiffiffiffiffiffiffiffi
�̂�k�̂�l

q
�ðhÞ ¼ �k�lð1Þ � �k�lðsi � sjÞ ð13Þ

with �p�qðhÞ the (k � l cross)-correlogram, and �p�qð1Þ the sill of either the cross-variogram (if

p 6¼ q) or one of the direct variograms (if p ¼ q).

Prediction standard errors for ŷytðs0Þ are approximated by combining the estimation error for the

trend and the prediction (kriging) error for the residual:

�tðs0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
�;tðs0Þ þ �2

e;tðs0Þ
q

; t 2 f98; 99g ð14Þ
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Figure 6 shows the predicted densities for Fulmaris glacialis, for August/September 1998 and 1998, as

obtained by simple residual kriging and residual cokriging. Figure 7 shows the corresponding standard

errors (14).

4. SPATIALLYAGGREGATED ESTIMATES

The high resolution maps of Figure 6 show a wealth of spatial patterns. The corresponding standard

errors (Figure 7) are fairly high, however, because each prediction corresponds to an area the size of an

individual measurement (point kriging). For larger areas predictions can be made by using block

(co)kriging, predicting

ytðB0Þ ¼ 1

jB0j
Z
B0

ytðuÞ du ð15Þ

Figure 6. Predicted densities for Fulmaris glacialis, 1998 and 1999, simple kriging and cokriging

MAPPING SEA BIRD DENSITIES OVER THE NORTH SEA 581

Copyright # 2005 John Wiley & Sons, Ltd. Environmetrics 2005; 16: 573–587



with jB0j the area of B0. We approximated ytðB0Þ by averaging �̂�tðsÞ over block B0, and by adding the

simple block (co)kriging prediction êetðB0Þ to this. Block kriging proceeds by integrating the

covariance functions over the block over which we aggregate, and yields standard errors �tðB0Þ for
block aggregate predictions ŷytðB0Þ; details are found in Journel and Huijbregts (1978) and Cressie

(1993), for example.

A commonly used subdivision of the NCP into larger sub-areas is shown in Figure 8. Table 3 shows

the block kriging predictions, along with their residual prediction standard errors (for this table, the

estimation error of the block mean trend �̂�tðB0Þ was not assessed).

5. TEMPORAL CHANGES

Besides spatial patterns and means, a main issue in monitoring is temporal change, and the detection of

trends. We assessed location specific temporal changes in both high-resolution spatial patterns and in

mean values for larger areas. Of special importance here is the prediction error of estimated temporal

changes, which help indicate the significance of the temporal changes.

Figure 7. Standard errors of predicted densities for Fulmaris glacialis, 1998 and 1999, simple kriging and cokriging
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To assess temporal changes in sea bird densities from m temporal estimates at s0,

ŷyðs0Þ ¼ ðŷy1ðs0Þ; . . . ; ŷymðs0ÞT, we can estimate location-specific contrasts

ĈCðs0Þ ¼
Xm
i¼1

�iŷyiðs0Þ ¼ �Tŷyðs0Þ ð16Þ

by suitably choosing �. The standard error of this contrast ĈC is �TCovðŷyðs0ÞÞ�, with Covðŷyðs0ÞÞ the
prediction error covariance matrix of ŷyðs0Þ, which is yielded by cokriging. For example, when we

model the predicted values as changing linearly with time,

ŷyðs0; tiÞ ¼ b0ðs0Þ þ b1ðs0Þti þ �ðs0; tiÞ

then � can be chosen such that ĈC estimates b1ðs0Þ.

Figure 8. Subdivision of the NCP in large sub-areas

Table 3. Block average sea bird density estimates for the blocks of Figure 8 and their standard errors, obtained
with simple kriging or simple cokriging; �res;1998 refers to the residual prediction error, for year 1998 (the

standard error for the trend component was ignored for the results in this table)

Simple kriging Simple cokriging

Area ŷy1998 �res;1998 ŷy1999 �res;1999 ŷy1998 �res;1998 ŷy1999 �res;1999

Central North Sea 3.017 0.236 4.258 0.254 3.167 0.154 4.023 0.198
Southern North Sea 0.235 0.0462 0.350 0.0695 0.187 0.0336 0.444 0.0573
Coastal zone 0.00922 0.0227 0.0164 0.0401 0.00369 0.0178 0.0235 0.0328
Delta front 0.00298 0.0297 0.0144 0.0565 0.00290 0.0251 0.0114 0.0427
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In our case, where we only consider m ¼ 2 years, the contrast is the difference between years

C ¼ ŷy99ðs0Þ � ŷy98ðs0Þ, obtained by choosing � ¼ ð�1; 1ÞT. In this case,

SEC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðŷy98ðs0ÞÞ þ Varðŷy99ðs0ÞÞ � 2Covðŷy98ðs0Þ; ŷy99ðs0ÞÞ

p
An alternative but equivalent formulation for estimating differences using cokriging is given by

Papritz and Flühler, 1994.

Figure 9 shows estimated differences and standard errors for Fulmaris glacialis, both obtained

by cokriging (using (16)) and by simple kriging. In this figure, the simple kriging difference

standard errors were obtained by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
98ðs0Þ þ �2

98ðs0Þ
p

, thus ignoring residual correlations between

years. Figure 10 shows where the absolute differences are larger than twice their standard error,

indicating areas where the estimated differences are unlikely to be attributed to mere chance.

Figure 9. Estimated differences (top) and standard errors of differences (bottom) for Fulmaris glacialis using simple kriging

and cokriging
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6. RESULTS

Figure 6 shows densities for Fulmaris glacialis, estimated using simple kriging and cokriging. The

predicted pattern confirms the species’ preference for open sea, a pattern that is evident when glancing

at Figure 3. Figure 7 shows prediction standard errors. Prediction errors increase when predicted

values increase: a consequence of proportionality of variance (3). For most of the area the cokriging

prediction errors are smaller than those obtained by simple kriging. This is no surprise given the strong

correlation between the two years studied (Figure 5), which gives each year’s observations consider-

able weight for the prediction of densities in the other year. Figure 9 shows predicted differences for

1998–1999 and their standard errors. Both methods yield a similar global pattern; cokriging results in

significantly (2–3 times) smaller standard errors. Figure 10 shows classified difference, indicating

predicted differences that exceed twice their standard error; here, cokriging reveals many more trends.

Tables 4 and 3 show that averaged over large areas in 1999 the number of Fulmaris glacialis in the

NCP is significantly larger than in 1998, where significance is indicated by the notion that the

estimated difference exceeds twice its standard error. For the temporal differences of Table 4,

cokriging and simple kriging lead to different, but not necessarily conflicting estimates, and cokriging

estimates have standard errors that are 2–3 times smaller than those obtained by simple kriging.

Figure 10. Classified differences: if ĈC < �2SE a difference is classified as a decrease (white), if ĈC > 2SE a difference is

classified as an increase (black), remaining cells are classified as not significantly changing (grey). Left: using simple kriging

predictions and standard errors, right: using cokriging predictions and standard errors (Figure 9)

Table 4. Block mean estimates of differences for the areas shown in Figure 8, using simple
kriging or cokriging; SEC refers to the prediction error (the standard error for the trend

component was ignored for the results in this table)

Simple kriging Cokriging

Area ĈC SEC ĈC SEC

Central North Sea 1.241 0.347 0.856 0.106
Southern North Sea 0.1150 0.0835 0.2569 0.0367
Coastal zone 0.00722 0.0461 0.0198 0.0216
Delta front 0.0114 0.0638 0.00848 0.0266
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7. DISCUSSION AND CONCLUSIONS

This article presents block average densities and temporal changes in sea bird densities for Fulmaris

glacialis in 1998 and 1999, and it illustrates a simple approach to interpolation that combines

generalized linear modelling for the trend with geostatistical modelling of the residual that extends the

work of Gotway and Stroup (1997). The trend model is log-linear (2) in distance to coast and sea floor

depth; the residual model uses simple (block) cokriging (10) with residual (co)variances that are

proportional to the mean response (3), (12), (13).

The approach taken matches the observations and the processes considered, as it yields positive

estimates of the trend, and flexible modelling of the trend function is allowed. The approach yields

reasonable estimates (i.e. the spatial trend function) in regions where data are sparse, and in location-

specific, data-driven predictions of deviations from the trend function in areas where observations

suggest such deviations. Furthermore, prediction standard errors are provided for point estimates,

block mean estimates, and for temporal differences in both.

A number of important aspects may have been missed, however. From an ecological point of view,

the variables that were taken as covariates may not be the preferred ones. Better variables would

address the behaviour of the animals more directly, and should for instance be related to feeding habits

(e.g. availability of fish or shellfish species), and breeding (e.g. distance to breeding colonies). Only

very general information (coast aversion, relation of food to water depth) is carried by the covariates

currently used. Still, non-linear transformation or even more complex functions (higher order

polynomials or interactions) might be considered for the two covariates used here.

For the case presented here, it matters a great deal whether prediction errors between years are

considered independent (e.g. for reasons of convenience) or dependent. The latter assumption requires

the use of cokriging to assess kriging predictions, prediction error variances and prediction error

covariances. Because the residual spatial patterns for 1998 and 1999 were strongly positively

correlated, calculating the difference between the predictions for years 1999 and 1998 largely

decreases the prediction standard error of the difference when prediction error covariances are taken

into account. Using cokriging to assess changes between two moments in time not only results in a

more realistic framework with respect to the underlying assumptions, but also results in standard errors

for the differences that are 2–3 times smaller than the simple kriging standard errors; larger areas can

be said to be significantly different than for the case where temporal dependence was ignored (i.e.

simple kriging). Also, for the block aggregate estimates for the areas of Figure 8, cokriging yielded

more significant changes than simple kriging (Table 3). Compared to simple kriging, standard errors

for differences obtained with cokriging were lower by a factor of 2–4 (Table 3). It is shown that the

approach taken here allows the assessment of location specific estimates of gradual change over

multiple years.

Negative density estimates (Table 3) are an artifact of the residual interpolation procedure used

here: spatial trends are treated on the log-scale and cannot become negative when back transformed,

but residuals are predicted on the observation scale and cannot be guaranteed to yield a positive

density estimate when added to the trend estimate. For the case considered here, the negative values

are all very close to zero, and the estimation errors exceed their values by some factors. The approach

proposed by Diggle et al. (1998) would solve this issue. Applying their approach would, however,

require specification of prior distributions on all coefficients, and at the time of writing this article the

procedure was computationally too demanding for data sets the size of the one used here.

The presence of measurement errors in the data have not been addressed here. They may include

systematic errors (birds are more easily missed when small waves are present, when they occur in
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many small groups, or when light or wave conditions are suboptimal), or random errors (large groups

are estimates rather than counted exactly). Also, for the interpolation step we assumed that the spatial

field did not change between the three flight dates.

For the estimation of trend coefficients, spatial and temporal correlation in observations was

ignored. Pebesma et al. (2000a, 2000b) dealt with this issue by using a generalized estimating equation

approach (Liang and Zeger, 1986; Zeger and Liang, 1986), but encountered recurring problems with

convergence of regression and variogram coefficients.

The following simplifying assumptions were made and need mentioning: (i) during the estimation

of spatial correlation (3.2) the residuals were treated as regular observations (correlation resulting

from subtracting a common, estimated trend was ignored); (ii) no variance functions other than that of

(3) were considered (e.g. the negative binomial would have been a viable alternative); and (iii) we did

not consider anisotropy (direction dependent spatial correlations), because the data are collected along

linear flight paths. These issues lead to a potential bias and underestimation of uncertainties.
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