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Maintaining knowledge about the provenance of data sets, i.e., about how they
were obtained, is crucial for their further use. Contrary to what the overused
metaphors of “data mining” and “big data” are implying, it is hardly possible
to use data in a meaningful way if information about sources and types of
conversions are discarded in the process of data gathering. A generative model
of spatio-temporal information could not only help automating the description
of derivation processes, but also assessing the scope of a data set’s future use by
exploring possible transformations. Even though there are technical approaches
to document data provenance, models for describing how spatio-temporal data
is generated are still missing. To fill this gap, we introduce an algebra that
models data generation and describes how data sets are derived, in terms of
types of reference systems. We illustrate its versatility by applying it to a
number of derivation scenarios, ranging from field aggregation to trajectory
generation, and discuss its potential for retrieval, analysis support systems, as
well as for assessing the space of meaningful computations.
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1. Introduction

In order to make effective use of data sets, it is necessary to know how they were gen-
erated. Only then they can be turned into meaningful products. Data itself are only
sets of organized symbols. Column labels provide some interpretation, but even a com-
prehensible label like ”temperature” might refer to raw temperatures measured at 2 m
above ground, to daily averages, or interpolated values. For meaningful interpretation
and further analysis, it is essential to know about these origins. For example, a data set
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of spatial points with a temperature attribute may be the result of direct field measure-
ment in meteorology, of a statistical aggregation to spatially covering regions represented
by their centroids (compare Fig. 1), or it may even represent a set of body temperatures
measured by mobile devices of people distributed in space. Each origin causes differ-
ent meanings of points, and each meaning requires a different means of data analysis.
However, this meaning is not reflected in the data type. For example, the temperature
attributes of the point data set on the right of Fig. 1 are spatially intensive, i.e., they ap-
ply also to other points inside their corresponding region, since they denote this region’s
average. Thus interpolation is trivial and rather uninformative. However, interpolation
of the point dataset on the left is not trivial and can be very useful. In a similar use case,
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Figure 1. How point data sets can be generated from a field in different ways, changing the
meaning of points. S denotes points in geographic space, R regions, T time moments and Q
quality values (e.g. temperature). The point data set on the left is a result of field measurement
of temperature at a certain time and a set of locations. The data set on the right is a result of
aggregating measurements to a set of covering regions (tesselation), and of representing regions
with their centroid.

Heuvelink and Pebesma (1999) point out how in a soil mapping study the final result
critically depends on the order in which individual processing steps (running a process
model, spatial interpolation of point values, spatial aggregation) are taken. In essence,
we argue that in data analysis, we crucially depend on such meta-information which goes
beyond the data type.

In this paper we present a generative model of spatio-temporal information that pre-
cisely makes these distinctions, by describing how information is generated, including
raw observations as well as derived products. If the who, how and why of the entire
production chain is known, meaningful analysis can be inferred and added on top of an
existing data product and data sets can be queried on the basis of how they were derived
or which products they could be turned into. This enables smart data as opposed to
smart applications1 (Janowicz et al. 2015): the required knowledge remains no longer

1People tend to put a lot of their understanding of a domain into how their software works, i.e., into “smart
applications”. However, in this form, knowledge can hardly be reused by others.
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hidden in the procedures of some data analysis software, but forms an essential part of
the metadata which can be reused by other applications. For example, if the graph in
Fig. 1 would form part of the metadata of point sets, then data analysis tools such as
R (R Development Core Team 2015) could query for point data with a kind of origin
appropriate for kriging.

While a lot of research on spatio-temporal data in the past went into data semantics,
i.e., descriptions of the what, when and where of data, ranging from meta-data standards1

to ontologies (Brodaric and Gahegan 2010), only few efforts have been made so far in
describing data pragmatics (Asuncion and Van Sinderen 2010), i.e., who produced or
uses data, how and why (Gahegan and Adams 2014). From a pragmatic viewpoint,
the purpose (the why) of data generation and use is fundamental but has almost been
neglected in the past (Couclelis 2009). Information about data producers and users (the
who), on the other hand, is rather straightforward to gain, e.g. based on extracting
textual information on the Web (Gahegan and Adams 2014) which can be linked to data
sets (Zhao and Hartig 2012). The current understanding of the data generation process
itself (the how), however, still lacks good models.

For example, the PROV-O ontology (Lebo et al. 2013) can be used to maintain knowl-
edge about the activities (times), agents and entities involved in generating an artifact,
and in this way documents provenance in the Web of data (Zhao and Hartig 2012).
However, the model cannot tell us how the artifact was generated, i.e., based on which
procedures. Other provenance models2 have a comparable blind spot: they mainly serve
to link originators with different versions of generated artifacts, not with the way they
were made. A statistical model of data generation which learns conditional probabilities
between task, community, domain and data from text descriptions was recently proposed
by Gahegan and Adams in terms of a Bayesian network (Gahegan and Adams 2014).
However, the model leaves open what its nodes and edges really mean, and it can only
reflect what happened in the past, not what may be possible in the future.

In order to describe what can be done with data sets, another option is to use spatio-
temporal data models (Yuan 1999, Mennis et al. 2005, Worboys 1994, Goodchild et al.
2007, Miller 2005, Kranstauber et al. 2012). In the past, algebras have proven useful for
specifying relational (Codd 1970) and geo-relational databases (Güting 1988), as well as
fundamental GIS3 operations (Tomlin 1990, Frank and Kuhn 1995). Recently, algebraic
definitions of spatial data types (Ferreira et al. 2014, Camara et al. 2014) were proposed.

While algebraic approaches allow specifying the operations on spatio-temporal data
types independently from a particular data format or platform, available algebras often
do not distinguish enough between data types and the concepts these types represent
(Kuhn 2012). For example, while Camara et al. (2014) propose a data model for spatial
fields, a spatial field (understood as an observable function from continuous space into
some attribute, compare Stasch et al. (2014)) is not a data type. This can be seen from
the fact that the same field, e.g., measurable surface temperature, can be represented
by different incommensurable data types, such as: a point set representing a sample of
field measurements, a raster type representing satellite images, a data type of irregular
areas representing aggregated values, or a set of isolines. Note also that “field” data types
(such as raster data or isolines) and “field” concepts have very different mathematical
properties4. For very similar reasons, Kuhn and Ballatore (2015) have put the distinc-

1http://mrdata.usgs.gov/validation/
2Such as the Provenance Vocabulary or the Open Provenance Model Vocabulary (OPMV) (Moreau et al. 2008).
3Geographic Information System.
4The measurable function is spatially continuous and dense (as a measurement between two others may be repeated

http://mrdata.usgs.gov/validation/
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tion of concepts and data types at the heart of their language for spatial computation,
providing a conceptual layer on top of existing technology.

We suggest that spatio-temporal concepts should be described in terms of the gener-
ative procedures that underlie data sets, outside and inside a database (Scheider 2012).
This idea is captured in a reference system (Kuhn 2003), a system grounded in terms of
measurements or other kinds of operations that account for reference. For this reason,
we propose an algebraic model that describes possible spatio-temporal data derivations
as functions on data generation procedures, where the latter are captured in terms of
functions on reference systems.

We explain this idea of a two-level generation in Sect. 2, before we introduce spatio-
temporal information types in terms of reference systems (Section 3) and our algebra in
Sect. 4. To illustrate its applicability, we define a number of important types of derivation
(Section 5) and apply corresponding derivation graphs to well known scenarios. The
diversity of scenarios illustrates the power of the algebra as a high-level language to
describe data generation. In Sect. 6, we discuss the scope and potential of the algebra,
including:

• to document, for a given data set, how it was obtained;

• given a data set, to reason about the possible conversions and transformations;

• to provide an abstract interface to conversion and transformation tools;

• to assess meaningfulness of data analysis.

2. Spatio-temporal data generation

There are many ways how data sets can be generated. If we say that a data set is
derived, we mean that there are other data sets from which it has been derived. This
is not the case for all data sets. Some data sets are raw data in the sense that there
is no other data collection from which they have been derived. Data derivation is only
one way of generating data sets: Another one is observation (understood as a generic
term for technical sensing and perception) that generates raw data sets. The distinction
between derived and raw data sets is important, because it highlights the sources of
data provenance in terms of different kinds of data generation. Observation procedures
underlying data sets are thereby semantically prior to derivation procedures, in the sense
that they ground and give meaning to all data sets which can be derived thereupon
(Stasch et al. 2014, Scheider 2012).

Spatio-temporal information is not only a collection of numbers or statements. First of
all, it is a way of interpreting these numbers and statements in terms of experience and
measurements, based on corresponding reference systems (Kuhn 2003). Furthermore, it
is also a way of knowing how new interpretable data can be obtained. In previous work
(Stasch et al. 2014), we formalized observation, prediction and aggregation procedures as
functions over reference systems in order to define new notions of meaningful prediction
and aggregation. In this paper, we extend this idea and generalize spatio-temporal data
generation procedures as typed functions, independently of whether they are based on
observation or derivation, as shown in Fig. 2.

We start reading the flow chart in Fig. 2 bottom up, from inputs to outputs or to other
inputs, where everything with an input and output is a function. For example, a “field”

ad infinitum), whereas data as a result of measurement is bound to be finite and thus always discrete (cf. Scheider
and Kuhn (2011)).
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Figure 2. The general approach taken in this paper. Data sets are finite sets/lists of tuples of
referents of a certain type of reference system (basic type). Generation procedures are functions
over these types, and derivation operations are functions over these functions. Data generators
take a generation procedure and a given data set and generate a new data set. Examples for all
types are in gray boxes (compare references to sections of this article).

observation has space and time as input and an observed quality (e.g. temperature) as
output, whereas an “object” observation has an object and time as input (e.g. a power
plant at time t) and an object quality as output (e.g. tons of emitted CO2)1. A simple
example for deriving new functions (and thus new procedures) is to concatenate these
functions with functions on output types. Take e.g. z-standardization. It illustrates that
derivations can be considered higher-order functions (functions on functions), where fields
or time series and z-standardization are inputs (see Fig. 2), and z-standardized fields or
time series are outputs.

Data derivation is specified in terms of algebraic operations on generation procedures,
i.e., in terms of higher-order functions. Generation procedures (specified as functions
on basic types, see Sect. 3.3) can be transformed by derivation functions (specified as
functions on functions, see Sect. 4) to other generation procedures (specified as functions
on basic types). Generation procedures, in turn, are inputs for data generators (see Sect.
4.2), i.e., functions on data sets or lists (compare Fig. 2). This approach has several
advantages.

One advantage is that generation procedures and data types can now be explicitly
distinguished, the latter being types of (finite) tuple lists or sets. Data sets result from
performing generation procedures finitely many times, i.e., of applying corresponding
functions finitely many times on their domain. This distinguishes the possibility of data
generation, which may be infinite, from a certain derivation process and its data product,
which is always finite. In general, a function can be defined on an infinity of inputs even
though in practice it can be applied only to a finite selection.

1Compare the ideas about the concepts of field and object outlined in Galton (2004). In fact, many ideas in our
article can be traced back to Galton (2004).
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Our distinction between the left/middle and the right hand side of Figure 2 also reflects
another important divide: the distinction between concepts (procedures, referents and
their types) on the one hand, and data on the other. Normally, the information about
concepts underlying data is thinned out considerably. However, observation and deriva-
tion are not only ways to obtain data sets, they also give meaning to them. Therefore,
specific kinds of observations and derivations can be used to give meaning to spatio-
temporal data sets. Thus, our algebra can essentially be used to add spatio-temporal
concepts on the left hand side and the middle of Figure 2 to spatio-temporal data sets
on the right.

A further advantage of our approach is that the kinds of data generation that form
inputs do not need to be known on the level of the algebra. Generation procedures
can either directly denote observations, i.e., starting points for derivation, or results of
derivation. This makes our algebra very flexible in dealing with inputs. Furthermore,
using type variables (variables that range over the types), the abstract operations of the
algebra can be specified independently from types and reference systems and thus be
reused on different kinds of inputs.

We have specified our algebra1 in terms of the typed higher-order logic (HOL) Isabelle2.
However, we could have used any other strong static polymorphic type language as used
in functional programming (Hughes 1989), such as Haskell3.

3. Types of spatio-temporal information

Our type system captures spatio-temporal information in terms of the domains of refer-
ence systems listed under BasicType and GenerationType of Fig. 2. Basic types denote
basic domains of spatio-temporal reference, while generation types denote functions that
map between these domains (′a ⇒ ′b), standing for generation procedures. As will be-
come clear in the remained, our spatio-temporal type system includes more than just
space and time referents4. This allows us to treat “non-spatio-temporal” concepts as
special cases of spatio-temporal ones, namely by leaving out some of the observable
information.

3.1. Basic types: space, time, object and quality

To begin with, we need types that anchor our data sets in spatio-temporal experience
and distinguish domains of reference from each other. While many of these domains
are mathematically modeled in terms of real numbers, they are not identical with these
numbers, see Table 1. The domain of possible spatial point locations is denoted by the
type S. S stand for the set of all possible spatial points s ∈ S. A particular spatial
reference system (Iliffe and Lott 2008) uniquely identifies points (coordinate arrays) with
locations on the globe. The temporal domain is identified by T and denotes moments
in time. As for the spatial case, T denotes the set of all possible points in time t ∈ T ,
and a temporal reference system, such as POSIX time, uniquely identifies such a point

1Code available at https://github.com/simonscheider/Algebra-of-spatio-temporal-information-generation
2https://isabelle.in.tum.de/
3https://www.haskell.org/, with type inference of the Damas and Milner (1982) kind. As a matter of fact, Isabelle
is implemented in Haskell.
4In distinction to classical GIS systems, where objects and events and other discrete entities are often reduced to
their spatial regions or to spatial fields.

https://github.com/simonscheider/Algebra-of-spatio-temporal-information-generation
https://isabelle.in.tum.de/
https://www.haskell.org/
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Table 1. Overview of basic reference system types and simple derivations thereof. Each type
needs to go along with its reference system (RS). P denotes the power set (set of all subsets).

Symbol Type definition Math. model Description

S R
3 Type of possible spatial locations with RS.

T R Type of possible moments in time with RS.
D N Type of possible discrete entities with RS.
Q R Type of possible quality values with RS.

R S set P(S) Type of regions: bounded by polygons, curves,
or collections of isolated locations and combi-
nations thereof.

I T set P(T ) Type of collections of moments in time: con-
tinuous intervals or a set of moments in time
or combinations thereof.

D set D set P(D) Type of collections of object identifiers
Q set Q set P(Q) Type of collections of quality values.

bool {T,F} Boolean, also used to express predicates
Extent R× I P(S)× P(T ) Spatio-temporal extent of something
Occurs (S × T ) set P(S × T ) set of spatio-temporal points (occurrences of

something); footprint, support

with a moment in time. The Cartesian product S × T , along with its corresponding
reference systems, uniquely identifies locations in space and time. Note that there are
more complex algebraic structures than S × T to model space and time and that retain
its intrinsic properties. CAUSTA (Yuan et al. 2010) is an implementation based on a
Clifford Algebra that allows elevating metric and geometric operations to space-time in
a meaningful way. In this paper, we do not provide geometric data representations, but
focus on modeling semantic types and well-defined information generation procedures.

In order to distinguish discrete entities, we use the domain D, which can be imagined as
containing references to all the possible objects or events under study (persons, animals,
factories, countries, fire outbreaks ...). The reference systems of this domain need to
provide means to uniquely identify discrete entities in the world, e.g., based on human
perception or sensors (Scheider 2012).

The fourth basic domain consists of quality values Q. Generally, the quality domain
might be extended to the d-dimensional case. Every quality value comes with a reference
system that uniquely determines its meaning, e.g., in terms of SI base units1. Q may as
well refer to variables with ordinal or nominal measurement scales.

3.2. Sets, selections and partitions

Data can reflect values at spatial points, such as point measurements of elevation, but
also values for entire regions, such as population counts or densities. In our algebra, a
spatial region is defined as a particular subset r ⊆ S, and the type R denotes the set
of all possible regions2 (R = {r|r ⊆ S} the power set). Recall that any s ∈ S is only a
single location and for any r ∈ R, r ⊆ S. This distinction is important to clearly identify
the support of spatio-temporal information. Similarly, i ⊆ T denotes a temporal interval
or a set of time stamps. All temporal subsets are contained in I = {i|i ⊆ T}. In a similar
way, we will frequently use D set meaning P(D) = {U |U ⊆ D} and Q set meaning
P(Q) = {U |U ⊆ Q} to denote collections of objects and quality values respectively. Note

1http://www.bipm.org/en/measurement-units/
2Usually these include sets of locations bounded by polygon(s), curves, or sets of isolated locations.

http://www.bipm.org/en/measurement-units/
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Table 2. Selections and partitions of basic domains, such as selection of inter-
vals/regions that contain a certain point or vice versa points representing an inter-
val/region.

Symbol Type definition Description

Select Extent⇒ S × T select the centroid (or alike) of an extent
SSelect R⇒ S select the centroid of a region
TSelect I ⇒ T select the centroid of a time interval

Tessel S × T ⇒ Extent map spatio-temporal locations to spatio-temporal
extent

STessel S ⇒ R spatial tessellation: map spatial locations to re-
gions

TTessel T ⇒ I temporal tessellation: map time stamps to time
intervals

QPartition Q⇒ Q set map quality values to ranges of qualities
Qstat (Q⇒ bool)⇒ Q summarize quality values (e.g., mean, median)

that R and I are only abbreviations of the set types to ease notation and follow common
connotation.

Often it is necessary to know the time interval a time stamp is contained in, or the
region in which a spatial location is located. For these purposes, we define partitions of
basic domains: tessellations over space, time and space-time are disjoint sets whose union
is the entire domain. They are understood here as procedures to obtain the region (and/or
interval) of a point in space (and/or time). A selection, vice versa, picks a representative
location (e.g. a centroid) in space or time for a spatial region or temporal interval, see
Table 2.

3.3. Spatio-temporal data generation types

Fields

Fields are continuous phenomena over space and time, such as air temperature (cf.
Galton (2004)). The definition of a spatio-temporal field is given by the type S×T ⇒ Q.
Here, every location in space and time (s, t) ∈ S × T is assigned one value from the
quality domain q ∈ Q. The reduced case of a spatial field is defined as S ⇒ Q, and the
temporal field, which is equivalent to a time series, is given by T ⇒ Q.

Table 3. Definitions of types related to fields.

Symbol Type definition Description

Field S × T ⇒ Q spatio-temporal field
SField S ⇒ Q spatial field
TField T ⇒ Q temporal field (time series)

Inverted fields

Inverted fields, sometimes referred to as coverages, are similar to fields, but rather
than giving a Q value for every S and T point they delineate the (S and T ) regions in
which a given Q value (or Q value range) occurs. Typical examples of inverted fields
are land cover or land use maps, or contour line maps for elevation. A spatial inverted
field maps from the quality domain (e.g., land cover type: forest, water, urban, . . . ) to
output regions in which each single point has the given quality value (Figure 3, land
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Figure 3. The difference between inverted field (coverage) and lattice. For three polygons A,
B and C, land cover type and average elevation values are given in the table. At an arbitrary
location inside a polygon, e.g. the location marked with a +, an inverted field yields the quality
for that location, such as its land cover type. For a lattice, such as polygon average elevation, the
elevation value at this particular location (+) is not available, as the data refers to the whole
polygon.

cover type). A spatio-temporal inverted field yields volumes over space and time that
possess a certain quality.

Note that an inverted field is in general not the mathematical inverse of a field, as fields
are typically not bijective, i.e., the same value may occur at several locations. Note also
the difference to lattices, which are rather summaries over fields (see next subsection).

Table 4. Definitions of types related to inverted fields.

Symbol Type definition Description

InvField Q⇒ Occurs spatio-temporal inverted field
SInvField Q⇒ R spatial inverted field
TInvField Q⇒ T temporal inverted field

Lattices

Lattice1 data sets give aggregated values over given regions (or time intervals). Ex-
amples are population counts over an administrative district, the fraction of a country
that was deforested over a certain time period, or the intensity of red light averaged over
a single LANDSAT pixel area. As opposed to inverted fields, for an arbitrary location
within the given region or time interval, the value of the (non-aggregated) variable is not
available from lattice data. Figure 3 shows an example of a lattice: the average elevation
over polygon B does not inform us about the elevation at the location indicated by the
+ symbol.

Values reported as an interval time series (I ⇒ Q) per region (R) (e.g. monthly av-
erages) may stem from a spatio-temporal Lattice :: R ⇒ I ⇒ Q. Lattices may reflect
counts or densities of discrete entities (population density), or aggregations of continuous
values (average elevation). The region (or time interval) size over which lattices aggregate
is called the support of the data set.

1Note that this notion does not refer to the mathematical concept, but is adopted from spatial statistics (Cressie
and Wikle 2011).
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Table 5. Definitions of types related to lattices.

Symbol Type definition Description

Lattice R⇒ I ⇒ Q spatio-temporal lattice
SLattice R⇒ Q spatial lattice
TLattice I ⇒ Q temporal lattice

Events

An event refers to an instantaneous or extended occurrence of a phenomenon at some
location in space and time. For this reason, events are sometimes also called occurrences
(Galton and Mizoguchi 2009). Events are discrete and thus can be referenced by the
identifier set D. Spatio-temporal events are instantaneous in space and time and defined
as D ⇒ S × T , while we call extended ones block events (cf. Galton (2004)). Hence, an
Event maps a discrete identifier d ∈ D to a location in space and time (s, t) ∈ S × T .
A RegionalEvent maps discrete identifiers d ∈ D to a region with a single time stamp
(r, t) ∈ R× T . Several derivations and hybrid cases are listed in Table 6. Marked events
not only refer to a location in space and time, but have also a quality/attribute associated
with them.

Table 6. Definitions of types related to events. This table is not meant to be a complete
listing. Further definitions can be made by adding a quality domain Q; for illustration,
one such addition (MarkedEvent) is shown.

Symbol Type definition Description

Event D ⇒ S × T spatio-temporal events
RegionalEvent D ⇒ R× T events affecting a set of locations
IntervalEvent D ⇒ S × I events lasting for some time interval
BlockEvent D ⇒ Extent events affecting a set of locations and lasting for

some time interval
SEvents D ⇒ S events’ locations
TEvents D ⇒ T events’ timestamps

MarkedEvent D ⇒ S × T ×Q spatio-temporal marked events

Objects

Another type of information is generated when objects (also called endurants or con-
tinuants) are observed (Galton 2004). Objects might be moving or stationary, but in
contrast to events, they can be individuated in each moment of their existence (i.e., they
only have spatial and no temporal parts). Thus they are able to undergo change (Galton
and Mizoguchi 2009).

An object trajectory records changes of an object’s location. We define a trajectory
(in general) as a function T ⇒ S where single time stamps t ∈ T are mapped to spatial
locations s ∈ S. The regional and interval variants map time stamps t ∈ T to a region
r ∈ R (set of locations) or temporal intervals i ∈ I onto spatial locations s ∈ S respec-
tively. Adding marks (attributes) further enriches this structure (see Table 7).

Adding the object identifying domain D generates sets of object-referenced trajectories
defined by D ⇒ T ⇒ S. An additional quality domain Q generates marked objects,
see Table 8. Hence, the type Objects maps a discrete identifier d ∈ D to a trajectory
T ⇒ S. RegionalObjects map discrete identifiers d ∈ D to regional trajectories. Note
that we do not distinguish ontologically between objects and events. Instead, we suggest
these categories denote different views on discrete entities, expressed in terms of different
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Table 7. Definitions of types related to trajectories. This table is not meant to be a complete
listing. Further definitions can be made by adding a quality domain Q; for illustration, one
such addition (MarkedTrajectory) is shown.

Symbol Type definition Description

Trajectory T ⇒ S trajectory
RegionalTrajectory T ⇒ R trajectory of regions
IntervalTrajectory I ⇒ S trajectory over temporal intervals
BlockTrajectory I ⇒ R trajectory over temporal intervals of regions

MarkedTrajectory T ⇒ S ×Q marked trajectory

generation procedures1.

Table 8. Definitions of types related to objects. This table is not meant to be a complete
listing. Further definitions can be made by adding a quality domain Q; for illustration, two
such additions (ObjectTimeSeries, MarkedObjects) are shown.

Symbol Type definition Description

Objects D ⇒ T ⇒ S objects in time and space
RegionalObjects D ⇒ T ⇒ R objects in time and over regions
IntervalObjects D ⇒ I ⇒ S objects for collections of moments and in space
BlockObjects D ⇒ I ⇒ R objects for collections of moments and over re-

gions

ObjectTimeSeries D ⇒ T ⇒ Q time series associated with objects
MarkedObjects D ⇒ T ⇒ S ×Q marked objects in time and space

4. An abstract algebra of data generation

In this section, we introduce primitive operations of our algebra and illustrate how they
can be used to derive operations and generate data sets (compare Figure 2, upper left
and bottom right, respectively). First, we give a quick introduction into the syntax of the
typed HOL we use. We write x :: ′a for saying that expression x is of the type ′a. Type
variables (′a, ′b, ...) may represent any spatio-temporal information types as introduced
in Sect. 3. Complex types are either tuples (ordered sequences of the form (′a × ′b)),
relations or functions. Relations (denoted by types of the form (′a × ′b) set) are used
to express data sets1, while functions (denoted by types ′a ⇒ ′b) are used to express
data generation procedures. The operations of the algebra are higher order functions,
i.e., functions that can have any of these types as input or output. Expressions are either
primitive (x :: ′t) or can be obtained by applying functions to some other expression of
the corresponding input type (f x :: ′u)2.

1Compare the arguments of Galton and Mizoguchi (2009) for regarding objects and events as different interfaces
to processes, as well as the difficulties of systematically distinguishing them in Galton (2004).
1Using sets instead of lists for our purpose is a simplification, since we cannot express redundancy and repetition
of records and values. This simplification was not essential for the scenarios in our paper, however, it can become
relevant when describing sampling. In that case, corresponding operations should be expressed using lists.
2Where f :: ′t ⇒ ′u is a function and x :: ′t is a thing of the required input type. Note that binary functions f ::
′t ⇒ ′u ⇒ ′v, when applied to a single input, simply yield a unary function f ’ :: ′u ⇒ ′v, and that the function f
:: ′t × ′u ⇒ ′v is a unary function with a pair (tuple) as input.
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Table 9. Primitive operations of the algebra.

Operation Type Description

id :: ′a ⇒ ′a identity
inv :: ( ′a ⇒ ′b ) ⇒ ( ′b ⇒ ′a ) invert a function
curry :: ( ′a × ′b ⇒ ′c) ⇒ ( ′a ⇒ ′b ⇒ ′c) curry a function
uncurry :: ( ′a ⇒ ′b ⇒ ′c) ⇒ ( ′a × ′b ⇒ ′c) uncurry a function
comb :: ( ′x ⇒ ′y) ⇒ ( ′x ⇒ ′z) ⇒ ( ′x ⇒ ( ′y × ′z)) function combination (infixl � )
comp :: ( ′x ⇒ ′y) ⇒ ( ′y ⇒ ′z) ⇒ ( ′x ⇒ ′z) function composition (infixl ◦ )

objident :: ′a set ⇒ D object identification from a set
qmap :: D ⇒ Q turn object into a value

() :: ′a ⇒ ′b ⇒ ′a × ′b construct a pair
fst :: ′a × ′b ⇒ ′a get the first element of a pair
snd :: ′a × ′b ⇒ ′b get the second element of a pair
sglton :: ′a ⇒ ′a set construct a one element set
∩,∪ :: ′a set ⇒ ′a set ⇒ ′a set set intersection and union
ptoset :: ( ′a ⇒ bool) ⇒ ′a set convert predicate to set
settop :: ( ′a set) ⇒ ( ′a ⇒ bool) convert set to predicate
map :: ′a set ⇒ ( ′a ⇒ ′b) ⇒ ′b set map a function over a set
domain :: ( ′a × ′b) set ⇒ ′a set get domain of a relation
range :: ( ′a × ′b) set ⇒ ′b set get range of a relation
relimage :: ( ′a × ′b) set ⇒ ′a set ⇒ ′b set get image of a relation
prod :: ′a set ⇒ ′b set ⇒ ( ′a × ′b) set construct cross product of two sets
eqcl :: ( ′a × ′a) set ⇒ ( ′a set set) get equivalence classes of relation
subfun :: ( ′x ⇒ ′z) ⇒ ( ′x ⇒ bool) ⇒ ( ′x ⇒ ′z) get function defined on subdomain
subdom :: ( ′a ⇒ ′b) ⇒ ′b set ⇒ ′a set get subdomain of a function
image :: ( ′a ⇒ ′b) ⇒ ′a set ⇒ ′b set get image of a function

4.1. Primitive operations

Primitive operations are listed in Table 9 and explained in the following in the same
order in which they appear.

4.1.1. Operations on functions

First, operations that manipulate functions are needed. The identity function (id)
maps things to themselves, and inverting a function (inv) yields another function that
maps from outputs to inputs. Since only bijective functions can be entirely inverted, the
inverted function yields a definite value only for those things into which the original
function maps exactly once, for all others, it yields an error1. Currying (curry) means
to turn unary functions with tuples as input into n-ary functions, and uncurry means
to “undo” this2. A combination (comb) adds two functions with the same input into a
single function with a tuple as output (see Table 9). We abbreviate this operator by �
in (left-associative) infix notation (i.e., we can write f1�f2 = f3). A composition (comp,
abbreviated by ◦) concatenates one function with another, yielding a function from the
input of the first to the output of the second (see Table 9).

4.1.2. Constructors for basic domains

Some of the referents of our type system can be treated as a result of data construction.
In particular, we assume constructors for objects and qualities. We construct objects
from arbitrary sets (objident)3 and qualities from objects (qmap). The latter allows us to

1In Isabelle, this operator is defined based on Hilbert’s choice operator, compare isabelle.in.tum.de/doc/tutorial.
pdf.
2The latter is actually not a primitive, because it can be defined with inversion.
3In Isabelle, this can be done based on a parametrized type (datatype) definition, e.g., datatype ′a Ob = obj ′a
set.

isabelle.in.tum.de/doc/tutorial.pdf
isabelle.in.tum.de/doc/tutorial.pdf
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express objects as quality values (for turning objects into fields), while the former allows
us to derive new objects from data sets (e.g. for extracting objects from fields).

4.1.3. Operations on tuples and sets

We furthermore use a number of straightforward and well known functions (see Table
9, lower part) that manipulate tuples, relations and functions: () constructs a pair, fst
(and snd) yields the first (and second) of a pair. The function sglton constructs a sin-
gleton set, and ∩ and ∪ are set intersection and union. ptoset and settop turn boolean
functions (predicates) into corresponding sets and vice versa. The function map has a
particular relevance for data generators. It is used for mapping a function over a set (i.e.
for applying a function to all elements of a set, generating a new set). domain and range
denote domains and ranges of relations, relimage projects a relation to its image, prod
generates the cartesian product of two sets, eqcl generates all equivalence classes from
a relation, i.e., the maximal sets that are symmetrically and transitively connnected by
that relation1, image and subdom generate images and subdomains of functions, and
subfun generates a function which is defined only on a subdomain (yielding an error
value otherwise).

4.2. Defined operations

We show by a couple of examples how we can use this algebra for constructing more
complex operations. For a comprehensive list as used in this article, see Appendix B.
For example, inputs and outputs of functions can be collected into tuples and data sets.
Based on this, we can define data generators that extend a data set based on applying
some generation procedure. The out function writes out the inputs of a function together
with its outputs, switch and switchtuple switch the input of functions and sequences. The
gendata function is an example for a data generator, as it generates the set of outputs
of a function (i.e., the data generation procedure) together with its inputs over sets of
inputs.

def out :: ( ′a ⇒ ′c) ⇒ ( ′a ⇒ ( ′c × ′a)) where

out f == f � id

def switchtuple :: ( ′a × ′b) ⇒ ( ′b × ′a) where

switchtuple ab == (snd ab, fst ab)

def switch :: ( ′a ⇒ ′b ⇒ ′c) ⇒ ( ′b ⇒ ′a ⇒ ′c) where

switch f == curry(switchtuple ◦ (uncurry f))

def gendata :: ′a set ⇒( ′a ⇒ ′b) ⇒ ( ′a × ′b) set where

gendata as f ==map as ((out f) ◦ switchtuple)

As another example, we define aggregation of a binary function over its subdomain
(agg). For learning how this operation is used, see Sect. 5. The idea is that we take some
binary data generation function (the first input f ) as well as a subset of its domain (the
second input p) for which we would like to aggregate f ’s outputs using some aggregation

1Generating first the symmetric transitive closure of the relation, and then taking the union of all equivalence
classes, i.e., eqcl R ==

⋃
(x:: ′a). {R“{x}}.
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function (n). An intuitive notation (using uncurried functions and sets) of this idea would
look like this:

def agg∗ :: ( ′x0 × ′xi ⇒ ′y) × (( ′x0 × ′xi) set) × ( ′y set ⇒ ′y) ⇒ ′y where

agg∗ f p n == n (image f p)

However, in the following, we will often use curried functions and predicates instead
of sets, in order to reduce the number of necessary derivation steps. Thus, we define the
agg operation using a boolean version of the image operation (imageb):

def imageb :: ( ′a ⇒ ′b) ⇒ ( ′a ⇒ bool) ⇒ ( ′b ⇒ bool) where

imageb f b == settop (image f (ptoset b))

def agg :: ( ′x0 ⇒ ′xi ⇒ ′y) ⇒ ( ′x0 ⇒ ′xi ⇒ bool) ⇒ (( ′y ⇒ bool) ⇒ ′y) ⇒ ′y where

agg f p n == n (imageb (uncurry f) (uncurry p))

5. Spatio-temporal data derivation graphs by example

In this section, we illustrate how abstract operations can be chained to obtain spatio-
temporal derivation graphs. Derivation graphs describe possible ways through the flow
chart depicted in Figure 2, ending in a single product (i.e., they are trees rooted in
this product). As we demonstrate in this section, they are also precise models of con-
crete derivation scenarios well known from spatio-temporal information. Thus, they are
a compact, precise and flexible descriptions of given derivation methods.

If we speak of an operation, then we mean a function (from the algebra or some spatio-
temporal generation function) which is applied to inputs for derivation purposes. Note
that functions do not have to be applied in this sense, they can also be inputs or outputs
themselves. In derivation graphs, we link operations (orange nodes) with their typed

Figure 4. Derivation graphs. The upper one uses an operation from the algebra to convert a
spatio-temporal function, the lower one a spatio-temporal function to generate data sets.

inputs (white nodes with type labels) via white arrows and with their typed outputs via
black arrows. Operations of the algebra are rhombic, while spatio-temporal generation
procedures are oval (Fig. 4). Note that in order to keep figures to a manageable size,
operation nodes are allowed to have more than one input, so that the true order of
inputs is sometimes lost.

In the following examples, we generate data sets from fields, aggregations from fields,
construct objects from fields, trajectories from object occurrences, and events from tra-
jectories. Starting from spatio-temporal fields, we first illustrate how a data set denoting
a time series is derived by measuring this field, a procedure that applies equivalently
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Figure 5. Monthly average Atmospheric CO2 concentration, measured at Mauna Loa, taken
from columns 3 (decimal time) and 4 (average) of ftp://aftp.cmdl.noaa.gov/products/trends/
co2/co2 mm mlo.txt, downloaded on 10/28/2015

to all generation procedures discussed in this article. Then we describe how to generate
various kinds of aggregations as well as object constructions from the field. Each type of
derivation is illustrated with an application example.

5.1. Generating Mauna Loa time series data from a field

Suppose there is a measurement procedure for measuring CO2 concentration in arbitrary
locations in space and at arbitrary times. This procedure constitutes a field, say fCO2

::
Field . If we position our sensor at a certain location, say, lMaunaLoa :: S , then we fix the
location and thus derive a procedure to generate a time series (TField) for that location,
i.e. (curry fCO2

) lMaunaLoa :: TField . If we furthermore execute this procedure (using the
operation gendata) over a finite selection of time points times :: T set (the measurement
times), then we get a time series data set (for which monthly averages are shown in Fig.
5).

timeseriesMaunaLoa :: (T ×Q) set == gendata times ((curry fCO2
) lMaunaLoa)

Note that in the following, we omit the process of data generation if it is done in an
equivalent way.

5.2. Generating lattices: averaging summer temperatures over a city

Suppose that we want to aggregate a field variable such as temperature over a single
spatial region r :: R, such as a city, using a statistic qs :: Qstat such as the sample mean
(compare Fig. 6(a)). This procedure can be defined as (see Appendix B for definition of
agg l ):

def spatialAgginR :: Field ⇒ R ⇒ Qstat ⇒ S set ⇒ TField where

spatialAgginR f r qs d == aggl (curry f) (settop (r ∩ d)) qs

Note that in this definition, a set (d :: S set) is required as input which denotes those
locations where measurements were taken. For example, suppose we have a procedure
for measuring temperature in arbitrary locations in space and at arbitrary times, ftemp ::

ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_mm_mlo.txt
ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_mm_mlo.txt
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(a) (b)

Figure 6. Aggregating a field into a time series and into a lattice. 6(a) The derivation graph for
generating a time series from a field (compare def. spatialAgginR). 6(b) The derivation graph for
aggregating a field into a spatio-temporal lattice (compare def. sptAgg).

Field . We would like to know average temperatures for a city whose region is city :: R.
This amounts to averaging1 the image of our field over the set of measured locations ::
S set that lie in this region, for any given time. This yields a new time series procedure,
a time series of averaged temperatures of this city with fixed locations of measurement:

avgtempcity :: TField == spatialAgginR ftemp city mean locations

Similarly, we also aggregate fields over spatio-temporal tessellations. In this case, we
aggregate into a covering set of regions. The latter may cover space, time, or space-time
(compare Fig. 6(b), and see Appendix B for definition of aggT ):

def sptAgg :: Field ⇒ Tessel ⇒ Qstat ⇒ Occurs ⇒ Lattice where

sptAgg field tes qs d == curry (aggT (curry field) tes qs (curry (settop d)))

For example, suppose one is interested in average temperatures of countries over years,
and we have a tessellation of space into countries :: STessel and a tessellation of time into
years :: TTessel . We know the set of space-time points (measures :: Occurs) where and
when measurements were taken. Then we can generate a corresponding spatio-temporal
“temperature” lattice by averaging this temperature field at the measured space-time
points into this tessellation (compare also Fig. 6(b), and see Appendix B for definition of
comp2 .), and a corresponding spatial lattice by constraining this lattice to a particular
year 2014 :: I :

templattice :: Lattice == sptAgg ftemp (comp2 countries years ()) mean measures

tempSlattice :: SLattice == (switch templattice) 2014

We can now obtain a “pseudo” spatial point data set (compare our introductory example
in Sect. 1) by generating lattice data on the lattice’s regions lregions :: R set, and by
substituting these regions with their centroid :: SSelect :

pseudopointdata :: (S ×Q)set == map lregions ((tempSlattice � centroid) ◦ switchtuple)

1Using some function mean :: (Q ⇒ bool) ⇒ Q , which takes a predicate over quality values (≈ a set) and returns
a single quality value.
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Figure 7. The derivation graph for constructing objects from fields based on an equivalence
relation ((S×T ) ⇒(S×T ) ⇒ bool) on that field (compare def. consObjFromField).

5.3. Constructing fire occurrences from a temperature field

Suppose we know a continuous field of surface temperatures, varying over space and time,
how can we identify forest fires? We will need to threshold temperature, and identify
regions exceeding it. Objects are often derived from field data sets based on defining
particular logical subsets of these fields, which we call here occurrences ((S × T ) set),
because they denote those space-time locations where that particular object occurs. For
this purpose, objects need to be constructed based on identifying underlying sets. There
are many possibilities to do this1, however a very useful (and often used) option is to
identify sets by equivalence relations, i.e., relations which say whether a state of affairs
“continues” to occur over elements of a set or not. The operator eqcl generates equivalence
classes based on such a relation, which are then transformed to objects. genObjfromrel
constructs a set of objects in this way starting from any given relation R:

def objcons :: ( ′a set) set ⇒ D set where

objcons s == map s objident

def genObjfromrel :: ′a rel ⇒ D set where

genObjfromrel R == objcons(eqcl R)

If we have a way to define such an equivalence relation on a field using an operator
(Field⇒ ((S×T )⇒ (S×T )⇒ bool)), e.g. based on comparing values in this field, then
we can construct objects directly from fields:

def consObjFromField :: Field ⇒ (Field ⇒ ((S × T ) ⇒ (S × T ) ⇒ bool)) ⇒ D set

where consObjFromField f torel == genObjfromrel(ptoset(uncurry(torel f )))

For example, suppose we want to construct fire objects from a spatio-temporal tem-
perature field ftemp :: Field. We have an operation for detecting whether a fire object
continues in space and time, e.g., based on a temperature threshold and spatio-temporal
neighborhood in this field (such that neighboring points that exceed this threshold be-
long to a single fire object): fireequivalent :: Field ⇒ ((S × T) ⇒ (S × T) ⇒ bool) . A

1Compare the discussion in Scheider (2012), chapter 4.
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set of fire objects is then constructed from our field as follows (compare Fig. 7):

fires :: D set == consObjFromField ftemp fireequivalent

Once we have objects, how can we know about their occurrences? As discussed above
(Sect. 4.1.2), we identify and construct objects (objident) by identifying underlying sets,
and inverting this constructor yields a way of grounding (Scheider 2012) objects in these
sets. Based on groundings, we identify object occurrences simply as the space-time region
in which it is grounded. In the simplest case, an object is directly grounded in space-time:

def getOccsfromSTObj :: D ⇒ (S × T ) set where

getOccsfromSTObj == inv objident

Figure 8. The derivation graph for generating temporal objects ((T × ′a) set) from object
occurrences (D ⇒ (S × T ) set) and some temporal object characteristic (D ⇒ T ⇒ ′a)
(compare def. getObjData).

5.4. Deriving fire trajectories and qualities from fire occurences

Given that we identified fire occurrences from a field, how can we derive their trajectory,
and dynamic qualities associated with them, such as their size? Based on its occurrence,
we can derive data about some object, such as its quality or trajectory. Furthermore, we
can derive events from these occurrences. Trajectories and qualities are formally similar:
they can be constructed based on an object’s temporal occurrence (gettime), as well as
some temporal object characteristic (of type D ⇒ T ⇒ ′a). In the case of a trajectory,
this characteristic is simply its location. We generate corresponding data sets (( T × ′a)
set)) about the object (getObjData) by mapping the characteristic over those times in
which the object occurs (see Fig. 8):

def gettime :: D ⇒ T set where

gettime == (switch(getOccsfromSTObj ◦ map) snd)

def getObjData :: (D ⇒ T ⇒ ′a ) ⇒ D ⇒ (T × ′a) set) where
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Figure 9. The derivation graph for constructing regional trajectories from occurrences by pro-
jecting them from time to space (compare def. regTrajfromOccs).

getObjData f d == ((gettime ◦ map)) d (out(f d) ◦ switchtuple)

Different temporal object characteristics account for object trajectories, object qual-
ities and events. A trajectory is a function from time to space. In order to derive an
object’s trajectory from its occurrence, we need to project the space time relation which
represents its occurrence from time to space. We then obtain a function which maps from
times to regions in space (compare Fig. 9). Then we can use this function to generate a
trajectory data set for a given object:

def regTrajfromOccs :: (S × T ) set ⇒ RegionalTrajectory where

regTrajfromOccs R b == relimage (map R switchtuple) (sglton b)

def gettrajdata :: D ⇒ (T ×R) set where

gettrajdata == getObjData (getOccsfromSTObj ◦ regTrajfromOccs)

For example, in order to obtain the trajectory data set of the fire objects from the last
section (which is a moving region as depicted in Fig. 10), we just have to apply the above
mechanism to these objects:

firetrajectories :: (D × ((T × R) set)) set == gendata fires gettrajdata

In a similar way, we could also generate object qualities from fields, e.g., a spatial mean
temperature of a fire object based on its occurrence. Furthermore, the mere occurrence
of an object (e.g. a fire object) can be conceived as an event. The Rim Fire event in
Yosemite in 2013 is the lifetime event of the corresponding fire object, which can be
constructed by the extent of the sum of its occurrences:

def extentfromOcc :: (S × T ) set ⇒ Extent where

extentfromOcc oe == (domain oe, range oe)

def consEvfromTSObj :: BlockEvents where

consEvfromTSObj == getOccsfromTSObj ◦ extentfromOcc
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Figure 10. Spread of the Rim Fire in Yosemite from August 19 to September 2, 2013. NASA
Earth Observatory image (http://earthobservatory.nasa.gov/IOTD/view.php?id=81971) using
Landsat 8 data from the USGS Earth Explorer and fire extent data from InciWeb.

5.5. Deriving stop events from car trajectories

In this subsection, we illustrate what can be done with an object trajectory or an object
time series. A very important task is to generate events from trajectories, for example,
stop events from a data set of car trajectories (compare e.g. Palma et al. (2008)). As
an example, the enviroCar platform is an open platform for sustainable mobility where
users are able to connect their mobile phones to sensors in a car, to collect the sensor
data while driving, and to share the collected data sets with other users (Broering et al.
2015). Several analysis tools are currently being developed in this context. As a basic
analysis tool for traffic planners, a simple algorithm extracts stops near a certain point
of interest, e.g. a street junction with traffic lights, from all tracks. Stops are defined as
a set of consecutive speed measurements below 5 km/h within a track. Figure 11 depicts
an overview of tracks and the analysis tool showing the number of stops at a point of
interest1.

In order to measure a car’s track (a trajectory data set), the generation function used
to observe its trajectory (cartrajectory :: Trajectory) needs to be executed a finite number
of times (fixes :: T set):

def measuretrack :: Trajectory ⇒ T set ⇒ (T × S) set where

measuretrack traj ts == map ts ((out traj ) ◦ switchtuple)

def cartrack :: (T × S) set where

cartrack == measuretrack cartrajectory fixes

In order to derive stop events from a track, we first need to generate corresponding
stop objects based on some equivalence relation (withinstop :: (T × S ) ⇒ (T × S ) ⇒
bool) which expresses that pairs of space-time points are below a maximum speed. This
speed relation needs to be used as a filter on the track points of our trajectory, which
is done by intersecting withinstop with the Cartesian product of the track points. We
then derive an equivalence class from each (maximal) set of track points connected by

1More information about the enviroCar project and the different enviroCar analysis tools can be found at http:
//www.envirocar.org.

http://earthobservatory.nasa.gov/IOTD/view.php?id=81971
http://www.envirocar.org
http://www.envirocar.org
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Figure 11. Example EnviroCar: Single Stop events extracted from tracks at point of interest.

Figure 12. How to extract events from a trajectory based on a speed equivalence relation (T ×
S ) ⇒ (T × S ) ⇒ bool.

the relation. Once we generated stops in this way, we can generate corresponding events
based on their spatio-temporal extent, as above:

def trackrel :: ((T × S)× (T × S)) set where

trackrel == (prod cartrack cartrack) ∩ (ptoset(uncurry(withinstop)))
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def stops :: D set where

stops == genObjfromrel trackrel

def stopevents :: (D ×R× I) set where

stopevents == gendata stops consEvfromTSObj

Similar to constructing events from object trajectories, we can construct events from
time series. In this case, the equivalence relation needs to be defined on (T × Q) pairs.
For example, the quality could be car emission or fuel consumption, and the equivalence
holds between time points if the quality is above a certain threshold at these points and
in between. Since this approach is analogous to the example above, we skip the details.

6. Discussion

The algebra presented in this paper provides an abstract (general) and formal (precise)
model for the procedures involved in generating spatio-temporal data sets. It describes
how data sets are derived, and it can be used for documenting data provenance as well
as assessing the space of meaningful computations. We do not regard our algebra as a
means of performing such computations1. The basic idea behind our approach is that
we model core concepts (Kuhn 2012) (location, field, object, event) in terms of their
generation procedures (denoted by functions), and clearly distinguish the latter from
data types (denoted by tuple sets and lists).

This allows us to draw a number of important conceptual distinctions. First of all,
we avoid the longstanding field-oriented bias in spatio-temporal modelling (cf. Tomlin
(1990)) which suggests that spatio-temporal information could be ultimately reduced to
fields (cf. Camara et al. (2014), Goodchild et al. (2007)). In our opinion, this view is
responsible for a lot of confusion, since it tends to blur fundamental differences between
fields and non-field data types2. It is only in a field-oriented paradigm that non-field
concepts such as object trajectories appear as a challenge. In our algebra, basic domains
are described in terms of reference systems, including not only time and space but also
discrete entities such as objects, places and events. This means that all referents are in
principle on a par, as they can be the result of observation as well as data construction
(cf. Scheider (2012), chapter 4): Certain kinds of objects, such as fire or weather objects,
may have straightforward data constructors, while others, such as persons or places, may
require the whole human conceptual apparatus. Our approach is flexible enough to allow
for both kinds of provenance.

Second, since our model captures concepts as functions, it is able to distinguish a num-
ber of concepts relevant in spatial data analysis. For example, while fields are normally
represented as functions from space-time to quality, in particular situations they may
also be represented as inverted fields and lattices. In a similar vein, satellite data or dig-
ital elevation models are usually stored as arrays (raster data), and not as contour lines.
However, sometimes, efficient queries may involve inversion of fields to answer questions
like where is the elevation higher than 200 m above sea level? In our model, we can
consistently represent fields in terms of (pseudo) inverses (Q ⇒ R) by converting one

1Even though functional programming could in fact be used for this purpose (Hughes 1989, Frank and Kuhn
1995).
2cf. Galton (2004). Worboys (1994), Peuquet (1994) and Yuan (1999) can be regarded as attempts to integrate
fields with non-field concepts.
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into the other, such that contour lines do not intersect and polygons do not overlap. In
addition, as we argue in Pebesma et al. (2014), systems or file formats currently used for
processing spatio-temporal data sets, including R (Bivand et al. 2013), most geographic
information systems, and OpenGIS Simple Features (Herring 2011), do not distinguish
lattice data sets from inverted field data sets. This means that it remains unclear whether
properties (Q values) of sets of points (R: multipoints, lines, polygons, or raster cells)
actually refer to qualities of particular points in that region, or rather to a summary
value for the region as a whole (compare Figure 3). For the integration of data sets with
other data sets (Bierkens et al. 2000) or for the statistical analysis of such data sets this
distinction matters (Besag 1974, Cressie and Wikle 2011). Our formalism can therefore
help avoid wrong or meaningless calculations resulting from this ambiguity.

What is the formal expressivity and the scope of our algebra? While we demonstrated
in this article that our algebra models a wide range of relevant spatio-temporal data gen-
eration procedures on an abstract level, it remains an open issue whether it can be con-
sidered complete. As for now, the algebra does not include lambda abstraction, relational
algebra (Codd 1970), geometrical algebra (Yuan et al. 2010) or any kind of numerical
computations. Also, we did not consider the spatial core concepts network and neighbor-
hood (Kuhn 2012). We therefore believe our algebra is non-complete. Formally proving
completeness, however, would first require knowledge about the expressivity needed to
cover the practice of spatio-temporal data derivation, and this is considered future work.
Concerning the uniqueness of the algebra regarding the number of possible paths be-
tween two concepts, we can say that our algebra is non-unique, as it must be capable of
modelling different ways of obtaining the same data type (compare our introductory ex-
ample). The data generation procedures sketched in this paper are intentionally simple,
and cover basic but very common operations of GIS practice. In doing so we choose an
abstract concept, such as a field, to represent something in the real world, and by that
make an assumption explicit that goes unnoticed in practice. More elaborate data anal-
ysis procedures such as statistical inference, prediction and simulation add complexity
by making more complex assumptions, such as random variables to represent the field
or a sampling process, probability distributions or stationarity. A future challenge is to
extend the algebra presented here with statistical concepts.

The algebra can be used in a variety of ways. First of all, it can be used to publish and
document spatio-temporal information processes. For this purpose, a data set together
with its typed derivation graph can be published on the Web, for instance by using
linked data principles (Zhao and Hartig 2012). This allows querying for data sets based
on their data source or based on how they were generated. Furthermore, linking abstract
procedures to concrete tools allows querying for different tools that can handle a given
type of information, as well as querying for different information that can be handled by
a given tool. This can serve as an instruction to regenerate data sets, e.g., in the context
of e-Science and reproducibility of computational research (Bechhofer et al. 2010). One
challenge is to translate the type system of our algebra into classes of a Web ontology.
Another challenge is to map tools to generation types, and to annotate data sets with
their derivation graph. The latter should be automatized as much as possible in order
to avoid work for data publishers. For example, a tool such as R (R Development Core
Team 2015) could generate a derivation graph automatically in the background as data
producers generate data sets.

Second, since our algebra is generative, it can also serve as a way to explore and
reason about the space of possible derivations. Computing derivation graphs would enable
analysis support systems that suggest users how to arrive at a certain kind of information.
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Such a system could furthermore be used to expand data queries to include data sets that
do not directly live up to one’s purpose but can be made to do so. For example, a field data
set could be retrieved based on the knowledge that it can be turned into a required lattice
using that lattice’s regions. Computing derivation graphs is a topic for future research.
For this purpose (compare Appendix A), we can make use of type inference in functional
programming, cf. Damas and Milner (1982), making sure that every type safe function
application corresponds to a possible derivation. Computing every possible derivation in
our algebra does not terminate, because it includes operations forming infinite derivation
loops. Termination can, however, be enforced by restricting the application of functions.
As shown in Appendix A, this restricted problem clearly is tractable (O(n2)).

7. Conclusion

We propose an algebra as a model for spatio-temporal information generation which de-
scribes a variety of well known derivation processes in terms of derivation graphs. Such
graphs start from spatio-temporal data sets and available generation procedures (e.g.
observation), and end in derived data products. They cover major practices of spatio-
temporal information handling, such as derivations from and to fields, the construction
of objects, events, object occurrences and trajectories, and include various forms of ag-
gregation over space, time, entity or quality.

Data generation procedures are expressed as functions on basic types which stand for
reference systems of space, time, quality and discrete entities (Fig 1). Types restrict
the function application possibilities. Possible derivations can be expressed as chains of
function applications, where each function is either an operation of the algebra or a spatio-
temporal data generation procedure. In this way, we define types of data generation such
as tessellations, fields, coverages, lattices, events, objects, trajectories, and illustrate how
they can be converted into each other. In contrast to existing spatio-temporal algebras,
we conceptually distinguish procedures from data types, because only the former allow us
to capture provenance, regardless of whether they are based on observation or derivation.
Furthermore, the distinction is also relevant for assessing meaningfulness of an operation.

In contrast to existing provenance models, our algebra can be used for modeling how
spatio-temporal information is generated. In particular, our algebra makes explicit the
“support” of data sets, i.e. whether values refer to aggregated values or constant values
over regions or time periods. Querying derivation graphs enables establishing whether
two or more different data sets have comparable origins or may serve to derive new
products. Furthermore, the algebra serves as a way of generating meaningful derivations
of a data set, to be used in data analysis support systems and improved data retrieval. For
this purpose, we have discussed the tractability of the problem of generating derivation
graphs.

Future challenges include the extension of the algebra to networks and statistical infer-
ence, the encoding of derivation graphs as linked data, the automated annotation of data
products in analysis tools, and the computation of derivation graphs on top of which
discovery, retrieval and analysis support systems can be built. Also, formal assessments
of expressivity and completeness are still missing.
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Appendix A. Tractability of derivation graph generation

In order to assess the complexity of generating a derivation graph we analyze the recursive
algorithm A.1. The correctness of the algorithm is essentially given by the correctness of
the type checker (since each type checked application is a valid derivation). We assume
that the type checker requires a constant effort. If F denotes a container for functions
and E a container for expressions to which functions can be applied, then it must be
the case that F ⊆ E , since we need to handle higher-order functions. For completeness,
a derived function f must therefore be checked against both sets. Furthermore, the
algorithm needs to enforce termination. This is done by the following three restrictions:
(1) We make sure to generate only novel types (line 16), which prevents loops in the
generated graph. (2) We allow functions to be applied only a constant number of times.
In the case of concrete functions (functions without type variables), each function can
be applied only once, since applying it more than once would produce the same type
again, contradicting (1). For reasons of simplicity we consider only concrete functions in
the remainder, which can be removed from the container F as soon as their application
was successful (line 17). (3) Even though the production of new functions adds to F (line
22), we assume this has a probability below 1 (i.e., not every application generates a new
function). This has the effect that the set of newly generated functions decreases in size.
We denote this probability by 1/b, with b > 1, assuming it is a constant. Together with
(2) this assures that the container F is eventually consumed up, and thus the algorithm
terminates.

Regarding complexity, we now have the following situation: By conditions 1-3, a com-
plexity explosion as suggested by the recursive structure is prevented. In the best case,
i.e., if the set of functions is not expanded at all, F is consumed up linearly precisely after
|F | successful applications (where F is the initial set of functions). To find these applica-

tions, the effort of iterating over all function expression pairs is |F |(|E|−1)+
∑|F |

i=1 |F |−i
(compare lines 7-11 and line 16), where the second addend says that maximally |F | new
expressions can be added to E that need to be checked against the remaining functions in
F . This simplifies to |F |(|E|−1)+1/2|F |2. Thus the order of complexity is lower bounded
by Ω(n2) (where n = |E|). Note that this result could be further improved by using an in-
dex on types to search through the sets E and F , yielding Ω(n log n). A realistic runtime
measure however depends additionally on the decay of the increase of new functions. If we
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Algorithm A.1 An algorithm for generating a data derivation graph.
Input: Γ = a container of typed spatio-temporal data generation functions, and ∆ = a container

of typed spatio-temporal data sets. type allows checking type equivalence (type x = type
y) and error (type x = error).

Output: Expanded container E (of expressions), a set of their Types, as well as a derivation
graph G.

1: function Expand(Γ, ∆)
2: F ← Γ . Container for functions
3: E ← Γ∪∆ . Container for expressions
4: Types ← null
5: for e← E.next() do
6: Types.add(type e) . Adding initial types

7: while f ← F.next() do . This is where the magic starts!
8: checkFunction(f, E)

9: function CheckFunction(f, E )
10: while e← E.next() do
11: apply(f, e)

12: function CheckExpression(e, F )
13: while f ← F.next() do
14: apply(f, e)

15: function Apply(f, e)
16: if f6=e and type f e 6= error and type f e /∈ Types then . Enter recursion only if

functions are applicable and derived type is novel
17: F.remove(f) . Functions can be applied only once
18: G.add(edge(e,f)).add(edge(f,f e)
19: Types.add(type f e)
20: if type f e = (′a =>′ b) then
21: checkFunction(f e, E)
22: F .add(f e)

23: checkExpression(f e, F )
24: E .add(f e)

25: return E, G, Types

Figure A1. The series of increase of functions with a probability of 1/2.

assume the probability of generating a new function by way of a function application is
1/b, then the total increase of functions is described by the series 1/b |F |+1/b(1/b |F |)+...
(until the increase falls below 1, with F being the initial set of functions), and so the

total sum of newly generated functions is |F ∗| =
∑floor(logb|F |)

j=1 (1/b)j |F | (compare Fig-

ure A1). Note that |F ∗| is less than |F | for probabilities ≤ 1/2, while it is approximately
exponential (|F |floor(logb|F |)) for probabilities near 1. For each function in F ∗, we need to
iterate over all expressions (such that novel functions add to expressions, see lines 24 and
21) as well as the remaining functions (such that old functions are removed and new ones

added, see lines 17 and 23) :
∑|F ∗|−1

j=0 (|E|+ j) + (|F |+ j− j− 1). For probabilities ≤ 1/2
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(|F | ≈ |F ∗|), this simplifies to |F |(|E| + (|F | − 1)) + 1/2|F |2 and the total number of
functions is |F ∗|+ |F | ≈ 2|F |. Thus, if we assume b = 2, the worst case time complexity
is: |F |(|E|−1)+ |F |2 + |F |(|E|+(|F |−1)) and thus upper bounded by O(n2). Note, if we
assume a less conservative increase of functions, this can lead to exponential complexity.
However, a realistic probability parameter still remains to be investigated.

Appendix B. Definitions

Here is a list of all operations used in this article that are derived from our algebra and
were not introduced in the text:

B.1. Operations on functions

def comb2 :: ( ′u ⇒ ′x ⇒ ′y) ⇒ ( ′u ⇒ ′x ⇒ ′z) ⇒ ( ′u ⇒ ′x ⇒ ( ′y × ′z)) where

comb2 f1 f2 == curry ((uncurry(f1)) � (uncurry(f2)))

def comp2:: ( ′x ⇒ ′y) ⇒ ( ′a ⇒ ′b)⇒ ( ′y ⇒ ′b ⇒ ′z)⇒ ( ′x ⇒ ′a ⇒ ′z) where

comp2 f1 f2 f == switch(f2 ◦ (switch(f1 ◦ f)))

def subdomproj :: ( ′a ⇒ ′b) ⇒ ′b ⇒ ′a set where

subdomproj f b == subdom f (sglton b)

B.2. Function aggregations

def aggl :: ( ′x0 ⇒ ′xi ⇒ ′y) ⇒( ′x0 ⇒ bool)⇒ (( ′y ⇒ bool) ⇒ ′y) ⇒ ( ′xi ⇒ ′y) where

aggl f p n == ((switch((switch f) ◦ imageb)) p) ◦ n

def aggr :: ( ′x0 ⇒ ′xi ⇒ ′y) ⇒( ′xi ⇒ bool)⇒ (( ′y ⇒ bool) ⇒ ′y) ⇒ ( ′x0 ⇒ ′y) where

aggr f p n == aggl (switch f) p n

def aggT :: ( ′x0 ⇒ ′xi ⇒ ′y) ⇒ ( ′x0 ⇒ ′xi ⇒ ′A) ⇒ (( ′y ⇒ bool) ⇒ ′y) ⇒

( ′x0 ⇒ ′xi ⇒ bool) ⇒ ( ′A ⇒ ′y) where

aggT f r n d == (subdomproj (uncurry r)) ◦ ( ∩ (ptoset (uncurry d))) ◦
((switch map) (uncurry f)) ◦ settop ◦ n

def aggTr :: ( ′x0 ⇒ ′xi ⇒ ′y) ⇒ ( ′xi ⇒ ′A) ⇒ (( ′y ⇒ bool) ⇒ ′y) ⇒

( ′xi ⇒ bool) ⇒ ( ′x0 ⇒ ′A ⇒ ′y) where

aggTr f r n d == curry ((uncurry (f ◦
(comp2 id ((subdomproj r) ◦ ( ∩ (ptoset d))) (switch map)))) ◦ settop ◦ n)

def aggTl :: ( ′x0 ⇒ ′xi ⇒ ′y) ⇒ ( ′x0 ⇒ ′A) ⇒ (( ′y ⇒ bool) ⇒ ′y) ⇒( ′x0 ⇒ bool) ⇒

( ′A ⇒ ′xi ⇒ ′y) where aggT l f r n d == switch (aggTr (switch f) r n d)




