
Spatial data in R:
simple features

and
future perspectives

Edzer Pebesma (ifgi, Münster, DE)
Roger Bivand (NHH, Bergen, NO)

UseR! Stanford, Jun 27-30, 2016

1 / 17

What are simple features?

First: what is meant by a feature?

I any thing in the (real) world

I persons, cars, buildings, rivers, mountains, ...

I but also surfaces, and collections of all of these

Simple features refer to:

I a common architecture for simple feature geometry

I a formal standard: OGC 06-103r4; ISO 19125:

I “OpenGIS Implementation Standard for Geographic
information - Simple feature access - Part 1: Common
architecture”

I a set of encodings:
I WKT: “well known text”
I WKB: “well known binary”

2 / 17

http://www.opengeospatial.org/standards/sfa
http://www.opengeospatial.org/standards/sfa
http://www.opengeospatial.org/standards/sfa

What are simple features?

First: what is meant by a feature?

I any thing in the (real) world

I persons, cars, buildings, rivers, mountains, ...

I but also surfaces, and collections of all of these

Simple features refer to:

I a common architecture for simple feature geometry

I a formal standard: OGC 06-103r4; ISO 19125:

I “OpenGIS Implementation Standard for Geographic
information - Simple feature access - Part 1: Common
architecture”

I a set of encodings:
I WKT: “well known text”
I WKB: “well known binary”

2 / 17

http://www.opengeospatial.org/standards/sfa
http://www.opengeospatial.org/standards/sfa
http://www.opengeospatial.org/standards/sfa

How do simple features look like?

Encoded as well-known-text:

POINT(0 0)

LINESTRING(0 0,1 1,1 2)

POLYGON((0 0,4 0,4 4,0 4,0 0),(1 1, 2 1, 2 2, 1 2,1 1))

MULTIPOINT((0 0),(1 2))

MULTILINESTRING((0 0,1 1,1 2),(2 3,3 2,5 4))

MULTIPOLYGON(((0 0,4 0,4 4,0 4,0 0),(1 1,2 1,2 2,1 2,1 1)),

((-1 -1,-1 -2,-2 -2,-2 -1,-1 -1)))

GEOMETRYCOLLECTION(POINT(2 3),LINESTRING(2 3,3 4))

Polygons:

I first polygon: enclosing, counter-clockwise

I second, third, ... polygons: holes, clockwise

4 / 17

2D-only?
No:

POINT Z(0 0 0)

POINT M(0 0 0)

POINT ZM(0 0 0 0)

LINESTRING Z(0 0 1,1 1 1,1 2 3)

POLYGON M((0 0 1,4 0 0,4 4 2,0 4 1,0 0 1))

I Z: third spatial dimension (altitude, height)

I M: “measure”: “A Point value may include an m coordinate
value. The m coordinate value allows the application
environment to associate some measure with the point values.
For example: A stream network may be modeled as
multilinestring value with the m coordinate values measuring
the distance from the mouth of stream. ”

M cannot be thought of as usual attributes of a polygon or line: an
M value is associated with each point of a polygon, line, ...

5 / 17

Current situation in R, w/o SF

Current, with SF pieces

Where we want to go

Simple features in R: a proposal

We usually work with sets of simple features, where feature
properties (attributes) are in a data.frame or similar.
Useful constraints will be:

I sets will have a single type (which can, in case of a mix, be
GEOMETRYCOLLECTION)

I sets will have a single coordinate reference system

Keep it simple:

I feature sets should be a list, and work as a list column in
data.frame and the like (tidy!)

I use numeric for single point, matrix for a set of points, list
for set of sets

I use S3

I of class sf, attributes type (chr), epsg (int) and
proj4string (chr)

9 / 17

“list column”

> (d = data.frame(a = 1:3, b = I(list(1:2, c(1,3,5), 10:5))))

a b

1 1 1, 2

2 2 1, 3, 5

3 3 10, 9, 8....

> summary(d)

a b.Length b.Class b.Mode

Min. :1.0 2 -none- numeric

1st Qu.:1.5 3 -none- numeric

Median :2.0 6 -none- numeric

Mean :2.0

3rd Qu.:2.5

Max. :3.0

> library(tibble)

> data_frame(a = 1:3, b = list(1:2, c(1,3,5), 10:5))

Source: local data frame [3 x 2]

a b

<int> <list>

1 1 <int [2]>

2 2 <dbl [3]>

3 3 <int [6]>

R implementation: proposal

Although 7 of them are dominant, there are 72 types:

XY XYZ XYM XYZM

Geometry Geometry Z Geometry M Geometry ZM

Point Point Z Point M Point ZM

LineString LineString Z LineString M LineString ZM

Polygon Polygon Z Polygon M Polygon ZM

MultiPoint MultiPoint Z MultiPoint M MultiPoint ZM

MultiLineString MultiLineString Z MultiLineString M MultiLineString ZM

MultiPolygon MultiPolygon Z MultiPolygon M MultiPolygon ZM

GeometryCollection GeometryCollection Z GeometryCollection M GeometryCollection ZM

CircularString CircularString Z CircularString M CircularString ZM

CompoundCurve CompoundCurve Z CompoundCurve M CompoundCurve ZM

CurvePolygon CurvePolygon Z CurvePolygon M CurvePolygon ZM

MultiCurve MultiCurve Z MultiCurve M MultiCurve ZM

MultiSurface MultiSurface Z MultiSurface M MultiSurface ZM

Curve Curve Z Curve M Curve ZM

Surface Surface Z Surface M Surface ZM

PolyhedralSurface PolyhedralSurface Z PolyhedralSurface M PolyhedralSurface ZM

TIN TIN Z TIN M TIN ZM

Triangle Triangle Z Triangle M Triangle ZM

11 / 17

How does a spatial table look, in PostGIS?

edzer@gin-edzer:~$ psql postgis

psql (9.3.13)

Type "help" for help.

postgis=# select * from meuse2 limit 2;

id | zinc | geom

----+------+--

1 | 1022 | 0101000020E610000000000000008046400000000000804640

2 | 1141 | 010100002040710000000000000819064100000000D85B1441

(2 rows)

postgis=# select zinc, ST_asText(geom) from meuse2 limit 2;

zinc | st_astext

------+----------------------

1022 | POINT(181072 333611)

1141 | POINT(181025 333558)

(2 rows)

PostGIS keeps in two other tables the information

I that meuse2 has geometry column geom, the CRS ID of it

I what this CRS ID refers to (proj4string, WKT of CRS)

Reading WKT through DBI/RPostgreSQL

> library(RPostgreSQL)

> drv <- dbDriver("PostgreSQL")

> con <- dbConnect(drv,

+ dbname="postgis", user="edzer", password="pw",

+ host="localhost", port='5432')

> query = "select zinc, geom from meuse2 limit 2;"

> (tbl = fetch(dbSendQuery(con, query)))

zinc geom

1 1022 01010000204071000000000000801A064100000000AC5C1441

2 1141 010100002040710000000000000819064100000000D85B1441

Warning message:

In postgresqlExecStatement(conn, statement, ...) :

RS-DBI driver warning: (unrecognized PostgreSQL field type geometry (id:16393) in column 1)

> sapply(tbl, class)

zinc geom

"numeric" "character"

> query = "select zinc, ST_asText(geom) from meuse2 limit 2;"

> (tbl = fetch(dbSendQuery(con, query)))

zinc st_astext

1 1022 POINT(181072 333611)

2 1141 POINT(181025 333558)

> sapply(tbl, class)

zinc st_astext

"numeric" "character"

sf: design considerations (1/2)

I read + write using external libraries (GDAL)

I support PROJ.4 compatible CRS handling

I CRS transformation/conversion through GDAL (= PROJ.4)

I “stick” to S3

I single SF items shall have a class: sfi, or POINT, POLYGON etc

I sets of SF (list column) shall have a class sfc, and have bbox

and CRS attributes

I sf table objects with a single sfc shall have a class: sf

I sf shall extend its base class:

> a = data.frame(x = 1:3)

> (class(a) = c("sf", class(a)))

[1] "sf" "data.frame"

I balance simplicity with sp compatibility

I use numeric for single point, matrix for a set of points, list
for set of sets

sf: design considerations (1/2)

I start with the low-hanging fruit of the 2D (XY) geometries
POINT, MULTIPOINT, LINESTRING, POLYGON,
MULTILINESTRING, MULTIPOLYGON, GEOMETRYCOLLECTION

I keep the path open for all 68 SF types (inherit: XY ⇒ XYZ,
XYM ⇒ XYZM)

I add functions that convert sfi into the arguments needed by
grid::polygonGrob and the like.

I document for each of the non-spatial variables how it relates
to the spatial features (constant, aggregate, NA)

16 / 17

Discussion

I it is time for simple features in R; package sf will be doing
this

I simple features are standard and ubiquitous (databases,
geojson, leaflet, ...)

I we found support by R consortium; positive feedback from
ESRI too

I now that list columns are tidy, so are we
I sf will focus on I/O, interoperability, and functionality

I with R plot methods (base, grid)
I external data sources (GDAL)
I geometry operations (intersections etc.)
I migration path, conversion to/from sp

17 / 17

