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Technical details

SAGIS2 has two main aspects: (i) Multivariate Analysis, (ii) Geostatistics
assignment: 10%; tests: (i) 40%, (ii) 50%, all compulsory

study guide:

http://webct.uu.nl/



http://www.geog.uu.nl/~pebesma/sagis2/
http://webct.uu.nl/

What is multivariate analysis?

joint analysis of multiple variables, in relation to (i) a dependent variable (ii) each
other.

supervised :

prediction of a single variable from a set of predictor variables
one dependent, multiple independent
simple regression analysis — multiple regression analysis




What is geostatistics

prediction, not (only) under a given condition, but at a specific spatial location

spatial correlation plays a (lead) role

naturally extends (multiple) regression models




Multivariate analysis

matrix algebra

multiple regression

ordination techniques:




Goals of multivariate analysis

unsupervised : data reduction, finding groups

supervised : predicting values; predicting class membership

general : finding patterns, stories, exploring hypothesis




Why matrix algebra?

1. multivariate data are easily expressed as matrices

2. dimension “disappears”

3. geometric interpretation



Vectors and spaces

a vector has a length and a direction (coordinates).

length: |@| = \/a?+ a2+ ... + a2

addition: ¢= g+ b
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angle ¢ between @ and b: ¢ = cos™ !

S

Sl

outer product: a x b (vector product): vector; perpendicular to the surface formed
by @ and b, such that (@, b and @ x b) for a right-handed set Length: |d||b| sin ¢.

@ and b in the same direction: if @ - b = |@||b| (Vectors exactly in the same or
opposite direction are called dependent.)

@ and b orthogonal (perpendicular) if a - b=0




How do we define a space?

Minimum requirement for n dimensions: n independent, non-zero vectors

Say, a basis is formed by n vectors {aq, as, ..., a,}, then any point in the space
spanned by these vectors can be expressed as (A1a1, A\oas, ..., A\nay)

orthonormal basis 2D: (1,0), (0, 1)
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What is a matrix?

Square pattern (table) of numbers:
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Special cases:

row-vector m = 1:

column-vector n = 1:
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square matrix m = n:




13

1 (special case of diagonal matrix)

1 0 0
0 1 0
00 1|

null matrix a; ; = 0, for each i, j
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Why matrix algebra?

Notation compact, structured

Abstraction structure of calculations arises, independent of dimensions

Data matrix question forms, soil samples, “boorformulieren” etc.
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Element-wise matrix operations

addition A = B + ("
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scalar multiplication A = ¢B:

1 2 3 2 4 6
210
0 0 1 0 0 2
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Multiplication: the matrix product

DO
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BC # CB:
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Rules for matrix multiplication

1. B=C= AB=ACen BA=CA

2. (A+ B)C = AC+BC en C(A+B)=CA+CB

3. (AB)C = A(BC)
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Systems of equations Ax =)

DO
8 8
[
+ +
o
8 8
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+ +
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DO O

2%1 — Io = -3




2. back substition




zero element (3, 1), subtract line 1 from line 3:
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—9x3 = -9 : z3 = 1.

Substitution in 2 yields: bxo +3 =18 : 5 = 3

Substitution in 1 yields: 221 +3+3=6: 1 =0.




Multiple systems of equations
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Matrix inversion: AA=1 =171

definition matrix inversion:

AX =T X=A""1
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subtract line 1 from line 3:

multiply line 2 with 2:
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multiply row 2 by 2, multiply row 3 by 5:

2 1 3 1 0 O
0 10 6 —2 4 0
0 —-10 —-15 -5 0 5

add line 2 to line 3:
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add line 3 to line 1; add 2 times line 3 to line 2:

3 0] -4 4 5

divide line 2 by 10
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multiply line 1 by 12, multiply line 2 by 3:

this yields:
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Solving systems with the inverse

A TA=T




31

Singular matrix
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Application: linear regression

observation i:

p
Yyi = Pol + 1 Xin + BoXio+ ... + 5pXip+ € = ZXz',jﬁj + €
i=0

observation 2, matrix notation:
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Least squares solution

find 3 for which the sum of squared residuals is minimal.

Z — X8)(y— XB) =

vy —20X'y+ /X' X5
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X'XB=Xy
compare with
Ax =b
Ar =b, with A= X'X, x=Fand b= X"y

Solution:
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Example simple linear regression
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4.0

2.0
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1.0 2.0 3.0 4.0

T T T
0.0 0.5 1.0 f185) 2.0

y:60X1-|—51X33:X6+6

1 1 0 A
2 1 0 ()
2 1 1 e
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Application: projection

Projection matrices P satisfy:

P'P=PP =1

vectors are normalized and orthogonal (orthonormal)
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[ 0.18 2.64 | [ 2.38 1.17

0.61 1.40 0.50 —0.87 1.52 0.17

2= 0.18 0.85 = [ 0.87  0.50 ] RS 0.82 0.27
054 2.26 | 223 0.66 |

in 2D, for angle ¢ (counter clockwise from x),

o [ cos(9) —sin(cb)]

sin(¢)  cos(¢)




)

Determinant

r1 + 229 = 3
$1+3$2:5

We can eliminate x5 by multiplying eq. 1 by 3 and eq. 2 by 2:

3581 + 6562 — 9
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The general case

a1xy + bz
asr1 + boxo = o
multiply eq. 1 by by and eq. 2 by b;:

|
)
—_

a1bory + bibora = bacy







Calculation of determinant using sub-determinants

:1|

2 2 0 2 0 2
1 3‘_2‘1 3|+3‘1 1‘_

1x4—-—2%x —-2+3%x—-2=2
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Save calculations by simplifying the system:

1 2 3 1 2 3 1 2 3

0O 2 2|=1|20 2 2 |=10 2 2

1 1 3 0O —1 0 0O 0 1
=1 x2x1=2

A| =0, then A is singular and Ax = b

If, in Ax = b the determinant of A,
cannot be solved for x (if b £ 0).
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Eigenvectors, eigenvalues

Given a square matrix A, suppose that a vector x # 0 exists, such that

Axr = \x

with A\ a constant (scalair), then z is an eigenvector of A, en \ is the
corresponding eigenvalue.
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Calculation of eigenvectors and -values

We can write
Axr = \x
as
Ax — dxz =0
of

(A= Az =0.




Properties

1. Symmetric matrices have orthogonal eigenvectors

2. Eigenvalues of 0 correspond to eigenvectors in the directions (dimensions) that
are not present in the matrix.
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Example: eigenvalues/vectors
4 1
2 3
=(4—-XN)B =X —2=X—7TXA+10=0. This can be

Suppose A =
| 4—X 1

] . Solve

2 3-A
decomposed into (A — 2)(A —5) = 0 and the eigenvalues are \; = 2 and Ay = 5.
The eigenvectors are found by solving

and
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Covariance, correlation

variance: measures variability

Var(z) = : Z(m — z)*
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|Cov(z,y)| < +/Var(z)Var(y)

correlation: a normalized measure [—1,1] of linear dependency between = and

y:
Cov(z,y)

Var(x)Var(y
\/

Corr(z,y) =

symmetric: Cov(z,y) = Cov(y, ), Corr(z,y) = Corr(y, x)
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covariance/correlation matrix

Given a data matrix X (m rows with records, n columns with variables a:j),

the covariance matrix C is the n x n matrix with elements C; ; = Cov(x;, x;)

the correlation matrix R is the n x n matrix with elements R; ; = Corr(z;, ;)




Data reduction

Main goal in observational studies:

How can we reduce the research findings to a few relevant and clearcut
conclusions, unambiguously supported by the observations
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Data reduction

Main goal in observational studies:

How can we reduce the research findings to a few relevant and clearcut
conclusions, unambiguously supported by the observations

Main approaches in multivariate analysis:
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cor(x,y)=0.8

05 10 15 20
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cor(x,y)=0.8
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cor(x,y)=0.8

05 10 15 20




SAGIS2, 2005

Percent of Total

-15 -1.0 -0.5 0.0 0.5 1.0
residual
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Eigenvalue/vector properties

AX = XA
if A is symmetric, X is orthonormal

if A is orthonormal, \; are all equal

the more A deviates from orthonormal, the large the difference between \; and
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Centering and normalizing data variables

Suppose data are stored in a matrix X;

centering means that each column (variable) z; is replaced by z; — Z;, = zero
mean

l_—J — zero

normalizing means that each column (variable) x; is replaced by
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Eigenvalues/vectors: properties

eigenvectors of a symmetric matrix are orthonormal

eigenvectors are ordered by their corresponding eigenvalue; the first eigenvector
has (by definition) the largest eigenvalue

sum of eigenvalues equals sum of diagonal elements A




64

Singular value decomposition (SVD)

XnXm — RnxrArer/

TXm
r<m<n
X: centered data matrix
R: columns: eigenvectors of X X’
A: singular values of X (square root of pos. eigenvalues X'X of X X’)
o . . /
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Consequences SVD

XnXm — R’I’LX’I"A’I"X’I"K/

rXm

project X on eigenvectors of X' X: post-multiply with K:

Yixr = XoxmBEmxr = RAK'K = RA




)

PCA by SVD

centered (possibly normalized) data matrix X

Y = XK, K the eigenvectors of X'X (Cov(X) or Corr(X))

X'X is symmetric = K is a projection matrix
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Principal components — what are they?

Principal components (PC's) are directions (new axes);

the first PC explains maximum variability in a data set

the second PC explains, independent from the first, maximum (remaining)
variabilit




68

Principal components: loadings and scores

Principal components are formed by the eigenvectors of the covariance or
correlation matrix; if X is the j-th centered column in data matrix X,

PCy = o111 X1 + a1 Xo+ ... +ap1 X,

with a the first eigenvector (column) of X’X. We call the coefficients a the
loadings of a PC. They tell the direction. Each PC has as much loadings as X has

variables (columns).
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Rationale behind principal components

hopefully, a few PC’'s summarize the essence of the data:

retain the first few PC’s, and abandon the rest.

always a good first “shot” at correlated data (exploration)




70

The “size and shape” effect
Often, the more interesting information is in the second (or later) component;
examples:

fossil data the first component measures size, the second shape (width/height);
size tells something about age, shape about species

spectral curves first component measures brightness (exposed vs. shaded areas),
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pollution the first component may measure degree of pollution, the second the
composition (relative ratios) of the pollution components, maybe connected to
the origin of pollution
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Use covariance or correlation?

User choice: IT MATTERS

if variables should be given equal weight (importance) in the analysis, use
correlations.

if differences in variances reflect the difference in importance of variables, use
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Curve data in Physical Geography

Example of curves:

grain size distribution

hyperspectral data (wavelength)

depth: e.g. moisture depth profile, variables 6(z;)
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Factor Analysis

Goal:

What is the relation (correlatin) of m observed variables with p (p < m)
underlying, unobserved factors?
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statistical model: >
X; =) ajpfr+te
r=1

X, j-th variable

ajr loading of the j-th variable on the r-th factor
fr th r-th factor

€; random variable, unique to X

the set of m ¢;’s is called the unique factor




if p=m: FA = PCA
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How do we determine p?

theory (not statistical theory, and neither physics!!)

2 0or3, .., 77 (never more)

experimenation ... which is not prior knowledge!
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Factor rotation

general idea: if p (p > 2) factors explain 80% of the variance, then any

p orthogonal factors in this p-dimensional subspace explain this 80% of the
variability.

PCA: first PC explains maximum variability
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Nominal variables and cross tables

Data: nominal (0, 1) or ordinal (1,2,3,...,n)

binary, e.g. present (1) or absent (0)

nominal, e.g. sand (0), clay (1), peat (3)
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Dune data set

How do plant species relate to each other?

How do plant species relate to environmental conditions?

30 species, 20 quadrats
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Data reduction by groups

ldea:

a (single) grouping variable (nominal variable) may reflect a simple but
adequate structure, and may summarize the multivariate variability in a (large
part of the) data set. We may seek such a grouping variable (clustering),
or measure its strength or predict group membership given from all other
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Discrimination and Clustering

discriminant analysis is concerned with how well a set of variables can predict
a given grouping variable, given the grouping variable is known. =- supervised:
grouping variable dependent, other variables independent







86

Discriminant functions

Discriminant function:

R=XMX{+XXo+ ... + 2\, X,, = VX

(axis) with:
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group means projected on the discriminant axis

Criteria for a good discriminant axis:

R4 — Rp as large as possible

Var(\ A) and Var(\'B) as small as possible
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How to find the function?

Var(A) = ¥ = Var(MA) = X2\
assume homoscedastic within-group covariances:

Var(A) = Var(B) = ... = Var(%)
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Testing multivariate differences

Significance testing of the multivariate difference A — B

compare to two-sample ¢-test:

t| > t(c, dF) : significant difference




90

Assumptions for the test

(Davis:)

1. observations were taken at random from the population

2. probability of being in group A or B is equal
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Wilk’s lambda

W : within-class covariantie matrix
T : total covariantie matrix
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Canonical analysis

Problem: more than two groups (A,B,C) or (A,B,...,Q)

multiple axes are needed

Search for p axes that
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Alternative approaches

SVM, support vector machines

ANN, artificial neural networks

logistic regression




94

Cluster analysis

Clustering: search for a good division into groups, based on measured values.

EDA

data reduction
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Clustering approaches

1. partitioning methods

2. arbitrary origin

3. hierarchical agglomerative
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Problems

when is a clustering a good clustering?

how many groups should we distinguish?
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Hierarchical methods

Find a measure of similarity (distance) between:

objects and objects

objects and clusters




weighted pair group

centroid
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Penalizing merges

How do we weight clusters

relative to each other

relative to other objects




given d? =1,

nang
na+np

naA, NB 1 2 5 10 A0
11050 067 083 0091 0.95
21067 1.00 143 1.67 1.82
51083 143 250 333 400

10 | 091 167 333 5.00 6.67

201 095 182 400 6.67 10.00

100
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Choices, choices, choices...

similarity measure (distances)

fusion criterium (when to merge)

Questions:
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K-means clustering

Arbitrary origin methods —

|dea: start with k arbitrary origins and repeat:

1. calculate distances of each object to the k£ centres
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k arbitrary origins: take the group means of a random partitioning of the objects
into k groups.
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Integral criteria

When, instead of distances an integral criterion (e.g. Wilk's A) is used: start with
an arbitrary partition, and repeat:

1. exchange n objects at random

2. accept the change if the criterion improved
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How many clusters

theory (compare FA)

clusters found can be interpreted

7 (like legend units on a map)
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1-nearest neighbour (“Thiessen polygons”)
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first order linear trend

2000

—1600

—1200

—800

—600

300

200

150

F
iy
y 4
!‘

80



Inverse distance weighted; idp = 2
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Ordinary point kriging
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Universal (external drift) point kriging
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Spatial statistics

“Statistics for spatial data” (Noel Cressie, 1993):

point pattern data: a pattern where the actual spatial locations are of interest
(e.g. are they random or clustered — diseases, crime scenes)

lattice data: attributes are measured on regions that collectively form the study
area, e.g. postal code regions, NUTS regions, image pixels




117

Primary data

measured attribute

spatial location (z, y; 27), locations projected

other attributes ...
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GIS data base

x and y coordinates of prediction locations

land use, soil type

elevation (DEM)
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Simple approaches to spatial prediction

linear regression:

* using an “external” predictor
* using coordinates as predictors
* global, or local?

* weighted, using distance?
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Linear regression as spatial predictor

Examples:

> Im(log(zinc) “sqrt(dist), meuse)

rainfall and orography (altitude)
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Trend surface interpolation

Polynomials in z,y (or z,y, 2):

Z(x,y) = Bo + Bz + By + ez, y)

Z(z,y) = Bo + Bix + Boy + Bs2° + Bay” + Bswy + e(z,y)
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Local trend surface interpolation

For predicting Z(xq,19), given the model

Z(x,y) = Bo+ Bz + By + e(x,y)

pick only data in a local neighbourhood around (g, yo)

How to define a neighbourhood?




Categorical predictors: ANOVA

log(zinc)

5.5

5.0

soil
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Inverse distance interpolation

Use a weighted average:
ACYEDIRIACH
i=1

with sg = {xo, o}, or s = {x0, Yo, depth,} weights inverse proportional to power
p of distance:

|55 — 80| P







inverse distance power: , , [
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GWR - geographically weighted regression

e.g. log(zinc) ~ sqrt(dist); prediction of Z(sg)

apply in a local neighbourhood

apply weights, inverse proportional to |sy — s;|; functions:

+ Gaussian
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books by R.S. Fotheringham and co-workers
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Random variables and random functions

A random variable (RV) Z is a variable whose outcome is subject to chance. A
continuous RV Z has a distribution function: Fz(x) = Pr(Z < x) which can be
written as

Fyz(x) :/ fz(u)du
with fz(z) > 0, and fz(x) (defined as) the probability density function.

Expectation: E(Z) = [°._zf(z)dz
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For vector Z = |7y Zs ... Z,,]": Var(\N'Z) = N'Var(Z)\
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Best linear prediction (a.k.a. simple kriging)

Suppose we know p, and Z(s) = pu+ e(s). The linear predictor

Z(s0) =Y NZ(s)) =NZ
B

has variance
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A

Next, find weights such that Var(Z(sg) — Z(sg)) is minimized, and we have the
best (minimum variance) linear predictor.
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Best linear prediction weights

Let V = Var(Z) (nxmn)and v = Cov(Z(sg),Z) (n x 1), and scalar
Var(Z(sg)) = od.

Expected squared prediction error E(Z(sq) — Z(s0))% = 02(s0)

Replace Z with Z — i (assume p = 0)
0%(s0) = E(Z(s0) — NZ)? = E(Z(s0))? — 2XNE(Z(50)Z) + NE(ZZ")\




Spatial Prediction

Z(s3)=2.8 +
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Stationarity 1

Given prediction location sg, and data locations s; and s3, we need: Var(Z(so)),
Var(Z(s1)), Var(Z(sz2)), Cov(Z(sg), Z(s1)), Cov(Z(sg), Z(s2)),
Cov(Z(s1), Z(s2)).

How to get these covariances?

given a single measurement z(s1), we can not infer Var(Z(s1))
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Stationarity 2

Stationarity of the

mean E(Z(s1)) =E(Z(s2)) =...=m

variance Var(Z(s;)) = Var(Z(s3)) = ... = o2
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From covariance to semivariance

Covariance: Cov(Z(s),Z(s+ h)) =C(h) =E[(Z(s) —m)(Z(s+ h) —m)]
Semivariance: v(h) = 1E[(Z(s) — Z(s + h))?]
B[(Z(s) = Z(s + h))’] = E[(Z(s))* + (Z(s + h))? = 2Z(s) Z(s + h)]

[Assume m = 0]:




The Variogram
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The Variogram

the central tool to geostatistics

like a mean squares (variance) in analysis of variance, like a ¢ to a t-test

measures spatial correlation
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Variogram: how to compute

average squared differences:

Ny,
1 >

y(ﬁ) — I, - (Z(s;) — Z(s; +h))* hEh

divide by 2/Ny:




“olot” h at the average value of all h € h
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Variogram: terminology




0.6 -

semivariance
o
N
1

Partial
sill
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gstat coding (R):

> vgm(psill = 0.6, model = "Sph", range = 900, nugget = 0.06)
model psill range

1 Nug 0.06 0

2 Sph 0.60 900

> vgm(0.6, "Sph", 900, 0.06)
model psill range

1 Nug 0.06 0

2 Sph 0.60 900
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Why prefer the variogram over the covariogram

Covariance: Cov(Z(s),Z(s+ h)) =C(h) =E[(Z(s) —m)(Z(s+ h) —m)]

Semivariance: v(h) = 1E[(Z(s) — Z(s + h))?]
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Ordinary kriging

Simple kriging: Z(s) = pu+ e(s), u known

Ordinary kriging: Z(s) = m + e(s), m unknown

SK: linear predictor \'Z with A such that 02(sg) = E(Z(sg) — A Z)? is minimized
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BLUP: Z(sg) = 1 + vV ~1(Z — )
with m = (1'V-11)"11'Vv~1Z, and
0%(sg) =05 — vV o+ (1 -1V )/ (@'v-11)"11 -1Vl
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gstat: status of project

open source (GPL) project, , started in 1992

gstat (or gstat.exe) is a stand-alone binary that

* input: e.g. data (e.g. through GDAL) and uses gnuplot to show variograms
* reads (ascii) data and (usually) writes maps.

gstatw.exe: gstat+GUI; stand-alone; very limited functionality, little



http://www.gstat.org/

gstat and gstat S library are fully documented

recent: gstat S library depends on sp

upcoming: “Applied Spatial Data Analysis with R”, by R Bivand & E Pebesma
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Kriging in a local neighbourhood

OK: Z(s) = m + e(s)

instead of assuming m globally constant, we can assume it is (only) constant in
a local neighbourhood around sg (expressed in distance, or number of nearest
points)
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OK, neighbourhood size 0: missing value
SK, neighbourhood size 1: prediction between nearest neighbour and u
OK, neighbourhood size 0: prediction is

large neighbourhood (n > 50): prediction is practically identical to kriging in
global neighbourhood (SK, OK; not UK)

if we have many data (e.g. n > 1000) krlglng in global nelghbourhood
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Support: point kriging

measurements have a certain support: the physical (spatial, temporal) “size” of
the sample that was measured.

we call this the point support, although strictly speaking, unlike points, point
support is larger than zero.
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predictions usually refer to estimates for quantities that would have been
measured on the same support as that of the measurements (point support
prediction; point kriging)
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Support: point or block kriging

predictions of mean values for areas, larger than the point support is called block
kriging; predict Z(Bg) = |Bo|™* fBo Z(u)du

the larger the support of the block, the smaller the prediction errors that come
with it

how large blocks should we choose? Some ideas:
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* related to monitoring network density: how much of the spatial pattern is
lost?




Isotropy and anisotropy

spatial correlation may depend on direction

usually it will, but to what extent?

large samples are needed to explore this
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Box 6.2. Computing kriging weights

Box 6.2 in Burrough and McDonnell contains errors.

Use the excel sheet kriging_graphics.xls instead (available from

).

authors: Hans Zuuring (Univ of Montana) and Derek Karssenberg



http://webct.uu.nl
http://webct.uu.nl
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Kriging standard deviation (or variance)

The kriging standard deviation o(sg) (or kriging variance, 6%(sg)) is (or should be)
a measure for the expected error Z(sg) — Z(sg), or prediction accuracy.

The kriging standard deviation:

depends on data configuration (closeness to s, degree of clustering)
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is smaller when the variogram is smaller (i.e., lower)

“Wrong" variograms will yield invalid prediction standard deviations. = cross
validation.
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Prediction intervals

(kriging) prediction yields Z(sg), not Z(sg).

we don’t know Z(sg), but we know the average magnitude of Z(so) — Z(so)
(zero), and its variance: o2(sg)
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* kriging assumes we know the variogram, v(h), whereas we can only estimate
it (cf. Z = 1t)
* variables never follow a normal distribution
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Stretching stationarity

(anisotropy: direction dependent variograms)

transform Z(s) non-linearly (e.g. log, sqrt, Box-Cox)

transform the geographic space non-linearly
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Stratified kriging
Instead of considering the whole study area as a single variable, split it into
“homogeneous” sub-areas, that are different with respect to

mean levels

variability, or spatial correlation structure (variogram)

both
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Each stratum should have sufficient observations for variogram modelling.
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Universal kriging/external drift

Universal kriging extends the ordinary kriging model
Z(s) =m+e(s)

to the more general models

Z(s) = Bo + Prf1(s) + B2fa(s) + .. + Bpfp(s) +e(s) = F'(s)5 + e(s)
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if the regressors f;(s) explain a considerable part of the variation in Z(s),
the residual variability in e(s) is much smaller than the variation in Z(s), the
variogram sill is much lower, and prediction will be more accurate (prediction

errors will be smaller)
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Cross validation

(Point) kriging yields the observed value at an observation location, so comparison
of Z(sg) and Z(sq) is not informative about the quality of the spatial
interpolation. Residuals are zero.

When we want to evaluate (compare) different interpolation methods, different
kriging variaties, or a kriging variaty with different variogram models, we use cross
validation. One version of cross validation is leave-one-out cross validation.
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calculate the residual Z(s;) — Z[i](si) and the normalized residuals, or z-score,

A

Z(Sz) — Z[z] (Sz)

o(si)
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Cross validation statistics

|deally

the correlation between Z(s;) and Z[i](si) should be close to 1

the variability of Z[i](si) should be close to that of Z(s;) (but will always be
smaller: the smoothing effect)
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Indicator kriging of nominal variables

Suppose we want to interpolate a binary, nominal variable, e.g. sand or clay. We
can code this into a 0/1 variable: 0 if an observation is sand, 1 if it is clay. A 0/1
variable is also called an indicator variable.

We can interpolate 0/1 values, as any values, after modelling its variogram. Note
that if the fraction of 1 is p, the variance (sill) of the variable is p(1 — p).

The interpolated map shows values mostly between 0 and 1, some are outside this
range.
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Indicator kriging of continuous variables

For continuous variables with a very weird distribution (e.g. counts with many
zeros), it sometimes is a good idea to work with indicator transforms of the

variable:

12600 ={ o e

for one or more cutoffs c. Indicator kriging results can be seen as estimates of
Pr(Z(s) < c¢), the probability that Z(s) is less than c.




For indicator block kriging estimates, the result should be regarded as estimates
of the fraction of the block where Z(s) < ¢, and not as an estimate of the
probability Pr(Z(By) < c):

I( /B Zwdu,c) £ | I(Z(),c)du

By

For the case in the computer course, | would not recommend this but rather use
logarithms, and a Gaussian distribution: assuming that Z(sg) follows a Gaussian
distribution with mean Z(sg) and standard deviation o(sg), Pr(Z(sg) < c can
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Data requirements for variogram estimation

Geostatistical interpolation requires that the interpolated data provide sufficient
information to estimate the variogram. At least three factors play a role for this:
sample size, sample configuration, and data distribution.

Variogram estimation becomes harder:

the smaller the sample size gets
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Sample configuration and variogram estimation

There is no agreement on a “universally” optimal sampling configuration for
geostatistical research (i.e., variogram modelling, followed by spatial prediction),
but:

for spatial prediction, regular (lattice, or triangular) sampling is optimal (in case
of isotropy; otherwise stretched lattices);

for variogram modelling, all distances should be present, including sufficient
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compromise: most effort put to regular spread, sufficient effort to short distance
replicates.

related questions: adding sampling points to an existing design, or reducing
(“optimizing” ) an existing monitoring network.
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What you should know about kriging

what do sill, nugget, range, and anisotropy tell about spatial variability of an
observed variable?

what happens if we predict a value at an observation location? and what if we
do a block kriging at an observation location?

what does the prediction variance measure?
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why is the prediction variance pattern independent on data, but only dependent
on data configuration?

what are the causes for positive nugget effect?

how to interpret cross validation statistics, how to choose between interpolation
methods based on cross validation

what is meant by the smoothing effect?
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Geostatistical software

Free:

gstat: stand alone; S-PLUS library / R package

other R packages: geoR, geoRglm, sgeostats, vardiag:

http://www.gslib.com

http://www.insightful.com



http://cran.r-project.org
http://cran.r-project.org
http://www.gslib.com
http://www.insightful.com
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ArcGIS geostatistical analysist ($2500) ( )

Isatis ( ); GoCAD (google)



http://www.esri.com
http://www.geovariance.fr
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What'’s left?

conditional simulation

multivariable geostatistics: cokriging

case studies: (i) groundwater quality in the Netherlands, (ii) spatio-temporal
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Conditional simulation

|dea: generate a large set of fields (realizations) that

honour the data (are conditioned to the data)

on average, reflect the kriging prediction and variance

each have a spatial variability, equal to that of the data (in contrast to the
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Sequential Gaussian simulation algorithm

For a set of prediction locations (the “mask”™ map), repeat

1. pick a random, unvisited prediction location, call it sg

2. given the observed and simulated data, calculate the (simple) kriging mean
Z(sg) and kriging standard deviation o (sg)
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Cokriging

instead of a single variable Z(s), we have multiple variables Zi(s), ..., Z.(s)
that are (spatially) cross correlated

spatial cross correlation: cross variograms

* Yap(h) = E((Za(2) = Za(x + 1)) (Z6(2) = Zp(2 + h)))
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Contrasts

given y(sg) = (ys6(S0), ¥91(S0), Yo6(S0), Yoo(so))’, we can calculate contrasts
C(s0) = Ny(so)

)

Y

IS
N

four-year mean: \ = (i,%,
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