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Motivation

o more data becomes available from an increasing number of
sources;

o (interdisciplinary) research tries to integrate more, and more
different types of data (satellite imagery, emission statistics,
air quality sensor data and model predictions, human
trajectories);

o the distance between researchers and the persons who
understand the observation process increases
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Motivation

o more data becomes available from an increasing number of
sources;

o (interdisciplinary) research tries to integrate more, and more
different types of data (satellite imagery, emission statistics,
air quality sensor data and model predictions, human
trajectories);

o the distance between researchers and the persons who
understand the observation process increases

= the risk of inappropriate or meaningless analysis increases
(How) can we design software such that it warns against this?



What does meaningful mean?

> f = factor(c("yellow", "yellow", "red", "blue"))
> f

[1] yellow yellow red blue

Levels: blue red yellow

> f[1] < £[3]

[1] NA
Warning in Ops.factor(f[1], f[2]) : < not meaningful for factors

> mean (f)
[1] NA
Warning message:

In mean.default(f) : argument is not numeric or logical: returning NA

> x = factor(c("Small", "Large"), ordered = TRUE, levels = c("Small", "Large"))
> x

[1] Small Large
Levels: Small < Large

> x[1] < x[2]

[1] TRUE
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> f = factor(c("yellow", "yellow", "red", "blue"))
> f

[1] yellow yellow red blue

Levels: blue red yellow

> £[1] < £[3]

[1] NA
Warning in Ops.factor(f[1], f[2]) : < not meaningful for factors

> mean (f)
[1] NA
Warning message:

In mean.default(f) : argument is not numeric or logical: returning NA

> x = factor(c("Small", "Large"), ordered = TRUE, levels = c("Small", "Large"))
> x

[1] Small Large
Levels: Small < Large

> x[1] < x[2]

[1] TRUE

factor variables represent categorical (nominal or ordinal) data; for
these, it is meaningless to compute means and variances.
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On the Theory of Scales of Measurement

S. S. Stevens

Director, Psycho-A ic Lab
OR SEVEN YEARS A COMMITTEE of the
F British Association for the Advancement of
Science debated the problem of measurement.
Appointed in 1932 to represent Section A (Mathe-
matical and Physical Seiences) and Section J (Psy-
chology), the committee was instructed to consider
and report upon the possibility of “quantitative esti-
mates of sensory events”"—meaning simply: Is it pos-
sible to measure human sensation? Deliberation led
only to disagreement, mainly about what is meant by
the term measurement. An interim report in 1938
found one member complaining that his colleagues
“came out by that same door as they went in,” and in
order to have another try at agreement, the committee
begged to.be continued for another year.

For its final report (1940) the eommittee chose a

vy, Harvard Unii

by the formal (mathematical) properties of the scales.
Furthermore—and this is of great concern to several
of the seiences—the statistical manipulations that ean
legitimately be applied to empirical data depend upon
the type of scale against which the data are ordered.

A CLASSIFICATION OF SCALES OF MEASUREMENT

Paraphrasing N. R. Campbell (Final Report, p.
340), we may say that measurement, in the broadest
sense, is defined as the assignment of numerals to ob-
jeets or events according to rules. The fact that
numerals ean be assigned under different rules leads
to different kinds of scales and different kinds of
measurement. The problem then becomes that of
making explicit (a) the various rules for the assign-
ment of numerals. (b) the mathematical properties
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SUMMARY

Just as there are different interpretations of probability, leading to different kinds of
inferential statements and different conclusions about statistical models and questions, so
there are different theories of measurement, which in turn may lead to different kinds of
statistical model and possibly different conclusions. This has led to much confusion and a
long running debate about when different classes of statistical methods may legitimately be
applied. This paper outlines the major theories of measurement and their relationships and
describes the different kinds of models and hypotheses which may be formulated within
each theory. One general conclusion is that the domains of applicability of the two major
theories are typically different, and it is this which helps apparent contradictions to be
avoided in most practical applications.

Keywords: CLASSICAL MEASUREMENT; MEASUREMENT THEORY; OPERATIONAL
MEASUREMENT; REPRESENTATIONAL MEASUREMENT; STATISTICAL MODELS;



Beyond Stevens:
A revised approach to measurement

for geographic information
Nicholas R. Chrisman
CHRISMAN@u.washington.edu [
Department of Geography DP 10, University of Washington
Seattle, Washington 98195 USA '

ABSTRACT

Measurement is commonly divided into nominal, ordinal, interval and
ratio 'scales' in both geography and cartography. These scales have been
accepted unquestioned from research in psychology that had a particular
scientific agenda. These four scales do not cover all the kinds of
measurements common in a geographic information system. The idea of
a simple list of measurement scales may not serve the purpose of
prescribing appropriate techniques. Informed use of tools does not depend
on the nature of the numbers, but of the whole 'measurement
framework’, the system of objects, relationships and axioms implied by a
given system of representation.

Introduction
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The appropriateness of spatial prediction methods such as Kriging, or aggregation methods such as
summing observation values over an area, is currently judged by domain experts using their knowledge
and expertise. In order to provide support from information systems for automatically discouraging or
proposing prediction or aggregation methods for a dataset, expert knowledge needs to be formalized.
This involves, in particular, knowledge about phenomena represented by data and models, as well as
about underlying procedures. In this paper, we introduce a novel notion of meaningfulness of prediction
and aggregation. To this end, we present a formal theory about spatio-temporal variable types, obser-
vation procedures, as well as interpolation and aggregation procedures relevant in Spatial Statistics.
Meaningfulness is defined as correspondence between functions and data sets, the former representing
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CO, emissions of power plants

Sum of CO, emissions

406842798.1074
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PM,, measurements Sum of PM;, measurements

30482.674

Interpolated CO, emissions

Interpolated PM;, measurements



Sinton (1978)

Sinton said that we have location, theme, and time, and from
these we can fix one, control a second, and measure the third.!

we fix control | measure | example

time location | theme land use map, satellite image

time theme | location | where are we (now)?

location | time theme temperature time series, stock
market quotes

location | theme time arrival times, earth quakes

theme location | time phenology

theme time location | tracer experiments, epidemic

1 The inherent structure of information as a constraint to analysis: mapped
thematic data as a case study. In: Dutton G (ed.) Harvard Papers on
Geographic Information Systems, Vol. 6. Addison-Wesley, Reading MA



Sinton (1978)

Sinton said that we have location, theme, and time, and from
these we can fix one, control a second, and measure the third.!

we fix control | measure | example

time location | theme land use map, satellite image

time theme | location | where are we (now)?

location | time theme temperature time series, stock
market quotes

location | theme time arrival times, earth quakes

theme location | time phenology

theme time location | tracer experiments, epidemic

But: Sinton’s theme does not distinguish discrete entities from
continuous phenomena.

1 The inherent structure of information as a constraint to analysis: mapped
thematic data as a case study. In: Dutton G (ed.) Harvard Papers on
Geographic Information Systems, Vol. 6. Addison-Wesley, Reading MA



Why reference systems?
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Four centuries after René Descartes watched a fly walk across his ceiling and
wondered how to capture its position (Gribbin 2002), we use Cartesian coordinates
routinely to describe locations. We identify the positions of entities in the real world,
transform their GIS representations from one coordinate system to another, and
integrate spatially referenced data across multiple coordinate systems. A theory of
spatial reference systems standardises the notions of geodetic datum, map projections,
and coordinate transformations (ISO 2002). Similarly, our temporal data refer unam-
biguously to temporal reference systems, such as calendars, and can be transformed



Types of Reference System Domains.

jects or events.

Reference Do- | Type| Description Example
main
Spatial Ds | All possible locations | ([—90,90] X
that are defined in a | [-180,180]) C R?
spatial reference sys- | defined in WGS84
tem
Temporal D, All  possible times | POSIX time (sec-
defined in a tempo- | onds from 1970-01-
ral reference system | 01 UTC) with D, C
Q
Quality D, | Set of all values that | [0,10°] C R with
a quality might take | unit ppm as de-
fined in Unified Code
for Units of Measure
(UCUM)
Discrete Entities | Dy | Set of discrete ob- | Set of coal power

plants in Germany in
2010




Spatial statistics data

Point pattern Lattice Geostatistical
observation observation observation
quality
) reference
‘ Place discrete discrete system
reference i ] ] | reference
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observed window temporal observed window temporal (observed window) temporal
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Formalism
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Point Pattern Variables

Functional type

Example

Dy = D,

Locations of longleaf pines in 4 ha of a
natural forest in Thomas County, Georgia

Dy = (Ds x Dyg)

Locations of longleaf pines in 4 ha of a
natural forest in Thomas County, Georgia
with diameters-at-breast-heights (DBH)

DdiDt

Occurrence of earthquakes in an american
county

Dd = (Dt X Dq)

Occurrence of earthquakes in an american
county with magnitudes

Dd :> (Dt X DS)

Occurrence of earthquakes at particular
locations in space and time

Dg = (D¢ x Ds x Dq

Occurrence of earthquakes at particular
locations in space and time with magni-
tudes




Geostatistical and Lattice Variables

Variable type Functional type | Example
Geostatistical (Ds x D¢) = Dy | PMyg  concentrations
Variable across Germany

Lattice Variable | ("Ds x D;) = Dg | Number of inhabitants
per cantons of the Midi-
Pyrenees




Trajectory Variable Type in Spatial Statistics

Variable type Functional type Example

Trajectory (Dg x D;) = Ds paths of tracked an-
imals

Marked  Trajec- | (Dg x D;) = (Ds x Dqg) paths of tracked an-

tory imals with measure-
ments of body tem-
perature




Spatial data bases: PostGIS view

user=# select * from co2 limit 3;

pk | plant_id | name | carbon_2007 | location
+ s S o e
1| 20075 | JANSCHWALDE | 27400000 | POINT(14.45305 51.83248)
2 | 14153 | FRIMMERSDORF | 24100000 | POINT(6.575827 51.0547)
3| 31142 | NIEDERAUSSEM | 30400000 | POINT(6.668831 50.99228)
(3 rows)

user=# select * from pml0 limit 3;

pk | station | time | pm10 | location

e e +o—————t ——
1 | ATOENK1 | 2005-06-01 | 14 | POINT(13.67111 48.39167)
2 | AT30202 | 2005-06-01 | 9.7 | POINT(15.91944 48.10611)
3 | AT45108 | 2005-06-01 | 7.8 | POINT(14.57472 48.53111)

(3 rows)

user=# select * from geometry_columns;
f_table_name | f_geometry_column | dim

4326 | POINT

pm10 | location | 2
2 4326 | POINT

co2 | location |



Choropleth: aggregate values per polygon
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Coverage: “

every” point is mapped

- Forest
- Pasturps and valley

Permanent crops
(olives, grapes, and citrus)

Mixed farmsn
(grains, hurtu:u\
wineyards, and \lw.slnckl

& Tabacco

1] 50 Hilometers

o 50 Miles
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Particulate matter time series, averaged over station type

PM,, annual mean (ug/m?) PM, ; annual mean (ug/m?)
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Developed by Paradigm4

not one, but multiple (discrete) indexes form “primary key’

Q

o dimensions: space (2 or 3), time, spectral, ...

o records may contain attributes of different types
Qo

built for Tb-Pb scale, scientific data
0 supports sparse arrays

When representing

> R = 6378.1
>C=2%pi *R * le6 # earth's circumference, in mm
> C / 2764 # resolution, in mm, if earth covered

[1] 2.172458e-09



Summarizing

o “points” may represent discrete entities, or measurements
taken on a continuous field

o meaningfulness of interpolation or aggregation (sum) depends
on whether we have the one, or the other

o polygons (or lines) attributes may represent aggregates over
varying values, or coverages (constant values)

o sampling (downscaling) is only meaningful for coverages

o GIS and (relational) data bases do not tell us one from the
other

o function types, constructed from 4 reference system domains,
can do so



Summarizing

o “points” may represent discrete entities, or measurements
taken on a continuous field

o meaningfulness of interpolation or aggregation (sum) depends
on whether we have the one, or the other

o polygons (or lines) attributes may represent aggregates over
varying values, or coverages (constant values)

o sampling (downscaling) is only meaningful for coverages

o GIS and (relational) data bases do not tell us one from the
other

o function types, constructed from 4 reference system domains,
can do so

o array data bases can meaningfully represent continuous
phenomena

o “taming” them for spatiotemporal data, and integrating them
with other types of spatiotemporal data remains a challenge
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